Kleine Formelsammlung der Zeitrechnung

ZUSAMMENGESTELLT VON UDO HEYL

Technisch-chronologische Algorithmen und Tabellen zur Reduktion des Islamischen, des Jüdischen, des Julianisch/Gregorianischen und des Chinesischen Kalenders auf die Julianische Tageszählung JD

Cælum mea regula

Der Himmel ist mein Maß

Autor: Udo Heyl, Stregdaer Allee 7, D-99817 Eisenach Titel: Kleine Formelsammlung der Zeitrechnung

des Islamischen, des Jüdischen, des Julianisch/Gregorianischen und des Chinesischen

Kalenders auf die Julianische Tageszählung JD

Produktion: UHU international

Satz: Roman 12pt

Exemplar: für Wanderbär Hajosa

 $\mathbf{U}_{ ext{do}}$ $\mathbf{H}_{ ext{eyl}}$ $\mathbf{U}_{ ext{nique}}$

Auflage 1997
 Printed in Germany

Inhaltsverzeichnis

1	Gru	ndlagen	3
	1.1	Die Basiseinheiten der Chronologie	3
	1.2	Die Kalendertypen	3
	1.3	Die mathematischen Verfahren	4
	1.4	Die Julianische Tageszählung JD	5
2	Der	Jüdische Kalender	6
	2.1	Jahr, Monate, Ära	6
	2.2	Die Berechnung des 0. Tishri	7
	2.3	Monate und Tage	7
	2.4	Wochentage und Festtagskalender	8
3	Der	Islamische Kalender	9
	3.1	Jahr, Monate, Ära	9
	3.2	Die Berechnung des 0. Muharram	10
	3.3	Monate und Tage	10
	3.4	Wochentage und Festtagskalender	11
4	Der	Julianische Kalender	13
	4.1	Jahr, Monate, Ära	13
	4.2	Berechnung von 0. Januar und julianischem Ostersonntag	13
	4.3	Monate und Tage	14
	4.4	Wochentage und Festtagskalender	14
5	Der	Gregorianische Kalender	15
	5.1	Jahr, Monate, Ära	15
	5.2	Berechnung des 0. Januar	16
	5.3	Berechnung des gregorianischen Ostersonntags	16
	5.4	Monate und Tage	17
	5.5	Wochentage und Festtagskalender	18
6	\mathbf{Der}	Chinesische Kalender	18
	6.1	Jahr, Monate, Dynastien und Zyklen	18
	6.2	Die Konstruktion eines Chinesischen Kalenders	19
		6.2.1 Die Berechnung der Neumonde nach Peking-Zeit	20
		6.2.2 Die Eintritte der Sonne in die Zodiakalzeichen	20
		6.2.3 Die Vergleichstabelle des Chinesischen Jahres	21
	6.3	Die chinesische 28-Tage Woche und die Feiertage	22
\mathbf{A}	Anh	9	24
	A.1	Tabellen der Monatsanfänge (19902030 greg.)	24
	A.2	Transskriptionstafeln der chinesischen Zeichen	30
	A.3	Die Tagesnamen der Siebentagewoche	32
	A.4	Einige Übungsaufgaben	33
	A.5	Bibliographie	34
	A 6	Referenz	35

Tabellenverzeichnis

	Die Syntax der mathematischen Funktionen	5
1	Die Monate des Jüdischen Kalenders	8
	Die Wochentage der Juden	9
	Die Feiertage der Juden	9
2		. 1
	Die Wochentage der Moslems	. 1
	Die Feiertage der Moslems	.2
3		4
		.5
	Die Feiertage der Katholiken und Protestanten	8
4	Die Jahre des 60jährigen Zyklus	9
	Die chinesischen Monatsnamen	20
5	Pekinger Sonneneintritte in die Zodiakalzeichen	21
	Die chinesischen Feiertage	22
6	Die 28 Mondstationen	23
7	Das JD der Jüdischen Monatsanfänge	5
8	Das JD der Islamischen Monatsanfänge	26
9	Das JD der Julianischen Monatsanfänge	27
10	Das JD der Gregorianischen Monatsanfänge	8
11	Das JD der Chinesischen Monatsanfänge	9

Copyright © by Udo Heyl 1997. Gesetzt mit LATEX.

Für meine Nichte Vera O., die an einem Freitag, dem 13. das Licht der Welt erblickte.

Zu diesem Artikel

Es war eigentlich meine Absicht, die wenigen Formeln zur Umrechnung der fünf Weltkalender auf fünf kurzen Seiten zusammenzufassen. Leider hat sich jedoch gezeigt, daß dieser Platz nicht ausreicht, da die nackten Zahlen noch einiger Erklärungen und Beispiele bedurften und letztendlich Tabellen für die Monatsanfänge der Gegenwart Aufnahme fanden.

Mit Hilfe der Formeln ist es möglich, Kalender für beliebige Jahre mit Monaten, Wochen und Feiertagen zu konstruieren — ausführliche Erläuterungen zur geschichtlichen Entwicklung der Zeitrechnung wird der Leser jedoch vergeblich suchen. Es sei hier auf die Literatur verwiesen.

Alle Angaben wurden sorgfältig auf Herz und Nieren geprüft. Fehler sind trotzdem nicht ganz auszuschließen.

Besonderer Dank gebührt meinem Vater Peter Heyl für seine Hilfe bei der Beschaffung von Fachliteratur aus der Forschungsbibliothek Gotha.

Eisenach, 6. Juni 1997

Udo Heyl Stregdaer Allee 7 99817 Eisenach GERMANY

1 Grundlagen

1.1 Die Basiseinheiten der Chronologie

Sonne und Mond sind offensichtlich die hellsten sichtbaren Objekte am Firmament. Weit wichtiger als deren Dominanz ist jedoch die Tatsache, daß sie durch ihre gesetzmäßige und über große Zeiträume konstante Bewegung die Grundeinheiten der Zeitrechnung definieren – wie Tag, Monat und Jahr. Diese Zeiteinheiten werden wie folgt festgelegt:

- Der MITTLERE SONNENTAG ist die Zeit zwischen zwei Durchgängen der mittleren Sonne ¹ durch den Meridian Dauer 1 Tag.
- Der Synodische Monat ist die Zeit, die der Mond braucht, um von einer Konjunktion ² mit der Sonne zur nächsten zu gelangen seine mittlere Dauer beträgt 29,53059 Tage.
- Als Mondjahr werden 12 synodische Monate bezeichnet es hat eine Dauer von 354,3671 Tagen.
- Das Tropische Jahr oder Sonnenjahr ist die Zeit zwischen zwei Durchgängen der Sonne durch den Frühlingpunkt Dauer 365,2422 Tage.

Diese Perioden verlangsamen sich durch Gezeitenwirkung im Laufe der Jahrhunderte. Die Veränderung ist jedoch so gering, daß sie keine Auswirkung auf chronologische Berechnungen für die nächsten 10 000 Jahre haben dürfte.

1.2 Die Kalendertypen

Da das tropische Jahr sowie der synodische Monat keine ganze Zahl von Tagen und das tropische Jahr keine ganze Zahl von synodischen Monaten enthält, bezeichnet man diese Größen als inkomensurabel. In der Absicht, Tag, Monat und Jahr aufeinander abzustimmen, entwickelten die Astronomen verschiedener Kulturen unterschiedliche Kalendersysteme. Dabei bildeten sich folgende drei Grundtypen heraus:

• Der Solarkalender des römischen Imperators Julius Cæsar ³, der auf dem Sonnenjahr basiert, hat eine durchschnittliche Jahreslänge von 365,25 Tagen ⁴, was ein tropisches Jahr um nur 12 Minuten übersteigt. Im 16. Jahrhundert hatte sich der Fehler des Julianischen Kalenders

¹die sich von der wahren Sonne durch eine völlig gleichförmige Bewegung unterscheidet ²Neumond − da dieser unsichtbar ist, läßt sich die Länge des synodischen Monats nicht direkt bestimmen

 $^{^3{\}rm Die}$ Einführung des Kalenders im Jahre 46 v. Chr. (dem sog. Jahr der Verwirrung, welches 14 Monate enthielt) war notwendig, um der willkürlichen Einschaltung von Monaten Einhalt zu gebieten.

⁴4jähriger Zyklus mit 3 Gemeinjahren zu 365 Tagen und einem Schaltjahr zu 366 Tagen.

4 1 GRUNDLAGEN

bereits zu 10 Tagen akkumuliert, was Papst Gregor XIII. 5 dazu veranlaßte, den Kalender erneut zu reformieren. Das Gregorianische Jahr dauert 365,2425 Tage 6 , so daß sich der Fehler erst nach etwa 30 000 Jahren zu einem Tag summiert.

- Im Gegensatz dazu richtet sich der Lunisolarkalender der Juden und der Chinesen sowohl nach dem Sonnenjahr als auch nach der Dauer des synodischen Monats. Da hier die Monate stets mit dem Neumond beginnen, der Jahreswechsel aber auch ungefähr an der gleichen Stelle im Sonnenjahr gehalten werden soll, muß es Gemeinjahre mit 12 Monaten und Schaltjahre mit 13 Monaten geben. In beiden Kalendern ⁷ im Chinesischen und im Jüdischen wechseln sich 12 Gemeinjahre ⁸ und 7 Schaltjahre ⁹ innerhalb eines 19jährigen Zyklus ab. Ihre Genauigkeit ¹⁰ ist für die nächsten 10 000 Jahre ausreichend.
- Ein reiner Lunarkalender ist der ISLAMISCHE KALENDER. Obwohl auch hier die Monate am Neumond beginnen, zählt jedes Jahr nur 12 Monate ¹¹, ist also durchschnittlich ein Mondjahr lang. Das Islamische Jahr ist demnach etwa 10 bis 11 Tage kürzer als das Sonnenjahr, so daß sich der Jahresbeginn in 33 Jahren durch alle Jahreszeiten schiebt. Die mittlere Jahreslänge beträgt 354,3667 Tage, wodurch sich ein Fehler von einem Tag zum Mondjahr erst nach etwa 2 500 Jahren ergibt.

1.3 Die mathematischen Verfahren

Die Formeln zur Rückrechnung der verschiedenen Kalender auf das Julianische Datum JD sind extra einfach, da sie nur aus den Grundrechenarten, sowie Integer-, Modulo- und Sinusfunktion 12 bestehen. Diese Funktionen sind in jeder höheren Programmiersprache enthalten. So können die Algorithmen leicht in Computerprogramme übernommen werden. Um Rundungsdifferenzen

⁵Die päpstliche Bulle trat in den katholischen Ländern 1582 in Kraft; die meisten protestantischen (außer Rußland) folgten 1700.

⁶400jähriger Zyklus mit 303 Gemeinjahren zu 365 Tagen und 97 Schaltjahren 366 Tagen.

⁷Die Schaltregeln werden unter dem jeweiligen Kalender angegeben.

⁸mit 12 Monaten bzw. 353 bis 355 Tagen

⁹mit 13 Monaten bzw. 383 bis 385 Tagen

¹⁰Bei Lunisolarkalendern muß die Genauigkeit zum Solarjahr und die zum Lunarjahr unterschieden werden. Der Chinesische Kalender hat die größtmögliche Genauigkeit, das heißt, er ist EXAKT — denn er richtet sich nach den astronomischen Erscheinungen. Die Abweichung des Jüdischen Kalenders von einem Tag zum Mondjahr dauert ca. 20000 Jahre — zum Sonnenjahr ca. 220 Jahre.

¹¹zu je 30 oder 29 Tagen – Die Jahreslänge beträgt 354 oder 355 Tage.

 $^{^{12}}$ Sollte das Argument der Sinusfunktion sehr groß sein, was bei der schnellen Bewegung des Mondes schon in Jahren vor 1800 oder nach 2100 der Fall ist, rechnen einige Computerprogramme ungenau. Es ist daher empfehlenswert, die Argumente auf Werte zwischen 0 und 2 π zu reduzieren.

zu vermeiden, sollte man mit REELLEN ZAHLEN DOPPELTER GENAUIGKEIT (mind. 15 signifikante Stellen) rechnen.

Die Syntax der Funktionen lautet:

Modulofunktion $x = a \mod b$ Rest der ganzzahligen Division a/b.Integerfunktion $x = \operatorname{int}(y)$ Die größte Ganze Zahl mit $x \leq y$ Sinusfunktion $x = \sin y$ Sinus von y (y im Bogenmaß)

 $\frac{\text{Tabelle:}}{\text{Syntax}}$ der Formeln $\lhd \lhd \lhd$

Trotz ihrer Einfachheit rechnen die Formeln im angegebenen Bereich 13 auf den Tag genau. Die Formeln sind zeilenweise abzuarbeiten. Sie geben jeweils den 0. Tag des Jahres im jeweiligen Kalender als JD 14 an. Will man das JD eines anderen Tages berechnen, so muß man in die Monatstabellen gehen. Für den Chinesischen Kalender wird ein gesondertes Rechenschema angegeben, da sich dieser nicht nach den zyklischen sondern nach den wahren Erscheinungen von Sonne und Mond richtet.

1.4 Die Julianische Tageszählung JD

Der Julianische Tag ($Julian\ Day = JD$) ist eine fortlaufende Zählung von Tagen seit Beginn des (astronomischen) Jahres -4712.

Der Tag JD=0.0 entspricht dem 1. Januar 4713 v. Chr. um 12:00 Uhr mittags oder in astronomischer Schreibweise dem Tag -4712~Jan.~1.5. Dieser Tag ist ein Montag. Man kann also den Wochentag eines JD aus dessen Rest mod 7 bestimmen 15 .

Da das JD als Zahl für den Otto-Normalverbraucher relativ nichtssagend ist, wird hier eine Methode 16 angegeben, um daraus das Julianische bzw. Gregorianische 17 Kalenderdatum zu bestimmen. Sie gilt auch für negative Jahreszahlen (astronomische Zählung), jedoch nicht für negatives JD. JD sei die Julianische Tageszahl 18 um 12 Uhr mittags, ferner für den

Julianischen Kalender: A = JD; und für den

Gregorianischen Kalender: $\begin{array}{ll} \Upsilon = & \text{int}(\ (JD-1\ 867\ 216.25)/36\ 524.25\) \\ A = & JD+1+\Upsilon-\text{int}(\ \Upsilon/4\) \end{array}$

Weiter rechne man:

$$B = A + 1524$$

 $^{^{13}}$ Alle Formeln sind zwar THEORETISCH unbegrenzt gültig, jedoch nur im Bereich 4 713 $v.Chr\ldots 10~000~n.Chr.$ sinnvoll.

 $^{^{14}\}mathrm{Da}$ das Julianische Datum JDvon Mittag zu Mittag rechnet, ist hier stets das JDum 12:00 UT gemeint. Die Stunden von zwischen Mitternacht und Mittag gehören zum JDdes Vortages.

 $^{^{15}}MO = 0 \dots DI = 1 \dots MI = 2 \dots DO = 3 \dots FR = 4 \dots SA = 5 \dots SO = 6 \mod 7$

¹⁶ ✓ [23] Jean Meeus, Astronomische Algorithmen. S. 76-78

 $^{^{17}}$ Die Formel des Gregorianischen Kalenders gilt nur für $JD \geq 2$ 299 161; zur Rückdatierung des JD in Daten des Gregorianischen Kalenders vor 1582 benutze man die Formeln aus Kapitel 5.

¹⁸Ganzzahl ohne Nachkommastellen, sonst ist das Ergebnis falsch.

```
C = \inf((B - 122.1)/365.25)
D = \inf(365.25 C)
E = \inf((B - D)/30.6001)
Tag = B - D - \inf(30.6001 E) + 0.5
Monat = ((E + 10) \mod 12) + 1
Jahr = C - 4 715 - \inf(0.85 + Monat/20)
```

Das Kalenderdatum ¹⁹ lautet Jahr.Monat.Tag im jeweiligen Kalender. Daten vor Beginn der gregorianischen Ära am JD=2 299 161 werden üblicherweise nach dem julianischen Kalender datiert.

Beispiel: Man berechne den Wochentag sowie das Julianische und das Gregorianische Kalenderdatum für $JD = 2\,452\,015$:

Als Rest mod 7 ergibt sich 6; also ein Sonntag.

Im Julianischen Kalender erhält man:

 $A = 2\,452\,015; \ B = 2\,453\,539; \ C = 6\,717; \ D = 2\,453\,384; \ E = 5$ $Tag = 2.5; \ Monat = 4; \ Jahr = 2001 \implies 2001 \ April \ 2.5$ Das ist der 2. April 2001 jul. um 12:00 Uhr mittags.

Im Gregorianischen Kalender ergibt sich:

 $\Upsilon = 16$

 $A = 2\ 452\ 028;\ B = 2\ 453\ 552;\ C = 6717;\ D = 2\ 453\ 384;\ E = 5$ $Tag = 15.5;\ Monat = 4;\ Jahr = 2001 \implies 2001\ April\ 15.5$ Das ist der 15. April 2001 greg. um 12:00 Uhr mittags.

2 Der Jüdische Kalender

2.1 Jahr, Monate, Ära

Das Jahr der Jüdischen Weltära W.Ä. hat 12 oder im Schaltjahr 13 Monate zu 30 oder 29 Tagen. Der 19jährige Schaltzyklus enthält sieben Schaltjahre, welche im 3., 6., 8., 11., 14., 17. und 19. Jahr des Zyklus geschaltet werden. Der astronomische Jahresbeginn ist der Moled Tishri, also der Tag ²⁰ des Neumondeintrittes im Monat Tishri. Auf Grund religiöser Vorschriften, die im Talmud ²¹ angegeben sind, wird das Neujahr in bestimmten Ausnahmefällen ²² ein oder sogar zwei Tage nach Moled Tishri verlegt. Durch diese Verlegung des Jahresanfangs entstehen 6 verschiedene Jahreslängen: Gemeinjahre zu 353, 354 und 355 Tagen und Schaltjahre zu 383, 384 und 385 Tagen, welche sich in einem ungleichmäßigen Rhythmus abwechseln. Die Namen der Monate entnehme man der Monatstabelle. Im Schaltjahr wird der Monat Veadar an

 $[\]overline{\ \ }^{19}$ bei negativen Jahren in astronomischer Zählung – \nearrow Fußnote 41 auf Seite 14

²⁰Der Tag des Jüdischen Kalenders beginnt bereits mit dem Sonnenuntergang am Vortag.
²¹An Šabbaten und Festtagen ist jede Arbeit (auch die Zubereitung von Speisen) untersagt. Deshalb dürfen das Neujahr und das Versöhnungsfest nicht auf Freitag oder Sonntag fallen. Das Jahr darf also nur am Montag, Dienstag, Donnerstag und Samstag beginnen.

²²Diese heißen Jach, Adu, Jach-Adu, Gatrad und Betutakpat. − ≯ [12] Ginzel.

den Monat Adar ²³ angefügt.

Die Epoche der Jüdischen Weltära ist der 1. Tishri 1 W.Ä. bzw. der 7. Okt. 3761 v. Chr.; $JD=347\,998$.

2.2 Die Berechnung des 0. Tishri

H sei die Jahreszahl der Jüdischen Weltära, ferner:

```
k_1 = 32 + 4656/98496
                                                \approx 32,047270955166
       k_2 = 1 + 272953/492480
                                                \approx 1,554241796621
       k_3 = 313/98496
                                                \approx 0,003177794022
       k_4 = 23269/25920
                                                \approx 0.8977\ 2376\ 5432
       k_5 = 1367/2160
                                                \approx 0,632870370370
        a = (12 H + 5) \mod 19
        b = (H-1) \bmod 4
       m = k_1 + k_2 a + b/4 - k_3 H
      m_1 = \operatorname{int}(m)
      m_2 = m - m_1
        c = (m_1 + 3 H + 5 b + 2) \mod 7
        J = H - 3.761
       J_1 = \operatorname{int}(J/4)
       wenn c = 2 oder c = 4 oder c=6
                                             dann E = 1
E=0 wenn c=0 und a>11 und m_2>k_4 dann E=1
                                             dann E = 2
       wenn c = 1 und a > 6 und m_2 > k_5
```

Für den 0. Tishri ergibt sich schließlich:

 $JD \; (0.Tishri.H) = 1\; 721\; 279 + m_1 + E + 1\; 461\; J_1 + 365\; b$

Der 0. Tishri fällt dabei auf September/Oktober des Jahres $^{24}\ J$ im Gregorianischen Kalender.

2.3 Monate und Tage

Will man das JD eines anderen Tages als des 0. Tishri bestimmen, muß man zunächst die Länge des Jahres bestimmen, um damit in die Monatstabelle eingehen zu können. Dazu berechnet man den 0. Tishri des folgenden Jahres. Die Differenz beider Jahresanfänge ist die Jahreslänge. In Tabelle 1 findet man nun die Differenz des Monatsnullten zum 0. Tishri. Durch Addition der Monatsdifferenz und des Tagesdatums zum JD des 0. Tishri erhält man das gesuchte Julianische Datum.

 $^{^{23}}$ Es wird ein Adar mit 30 Tagen eingeschaltet und der reguläre Adar mit 29 Tagen in Veadar umbenannt und angefügt. Daher ist der Adar der eigentliche Schaltmonat.

 $^{^{24}}$ Im Sept./Okt. des greg. Jahres J beginnt das Jahr J+3 761 der Jüdischen Weltära.

Differenzen der Monatsnullten zum 0. Tishri									
Nr. u	ınd Name	Jahreslänge							
des	Monats	353	353 354 355 383 384 385						
I.	Tishri	0	0	0	0	0	0		
II.	Cheshvan	30	30	30	30	30	30		
III.	$_{ m Kislev}$	59	59	60	59	59	60		
IV.	Tevet	88	89	90	88	89	90		
V.	Shevat	117	118	119	117	118	119		
VI.	Adar	147	148	149	147	148	149		
VI.	Veadar	_	-	-	177	178	179		
VII.	Nisan	176	177	178	206	207	208		
VIII.	Iyar	206	207	208	236	237	238		
IX.	Sivan	235	236	237	265	266	267		
Χ.	Tammuz	265	266	267	295	296	297		
XI.	Av	294	295	296	324	325	326		
XII.	Elul	324	325	326	354	355	356		

Tabelle 1: Die Monate des Jüdischen Kalenders

Beispiel: Auf welches *JD* fällt TEMPELZERSTÖRUNG des Jahres 5783 der W.Ä., also der 9. (bzw. 10.) Av 5783? Nach obiger Formel erhält man für den 0. Tishri:

$$JD (0.Tishri.5783) = 2 459 848$$

 $JD (0.Tishri.5784) = 2 460 203$
 $Jahreslänge(5783) = 355^d$

Nun findet man in Tabelle 1 den Wert 296 in der Zeile Av und der Spalte mit der Jahreslänge 355, resp. den Wert 9 aus dem Tagesdatum, also:

$$JD (9.Av.5783) = 2 459 848 + 296 + 9$$

= 2 460 153 [\textcap 3 \text{ mod 7}]

Dies ist ein Donnerstag *(jom khamishí)* – der Feiertag wird also nicht auf den 10. Av verschoben.

2.4 Wochentage und Festtagskalender

Die Tage der 7tägigen Woche haben keine Namen, wenn man vom 7. Tag – dem Šabbat – absieht, sondern sie werden durch die Ordnungszahlen benannt. Der 1. Tag (Sonntag) fängt bereits am Samstag 18:00 Uhr christlicher Rechnung an,

da die Zählung der Tage nach jüdischer Tradition 25 mit dem Sonnenuntergang beginnt. Die hebräischen Wochentage heißen:

 $\frac{\text{Tabelle:}}{\text{Wochen-tage}}$ $\triangleleft \triangleleft \triangleleft \triangleleft$

jom rishón (der erste Tag)	Sonntag
jom shení (der zweite Tag)	Montag
jom shlishí (der dritte Tag)	Dienstag
jom r'wií (der vierte Tag)	Mittwoch
jom khamishí (der fünfte Tag)	Donnerstag
jom shishí (der sechste Tag)	Freitag
shabát (Šabbat)	Samstag

Will man den Wochentag bestimmen, so teile man das JD durch 7. Der verbleibende Rest ²⁶ legt den Wochentag fest. Die wichtigsten Festtage ²⁷ entnehme man der folgenden Liste.

 $\frac{\text{Tabelle:}}{\text{Feier-}}$ tage $\lhd \lhd \lhd$

- 1.-2. Tishri *roš hašanah* Neujahrsfest; auch Tag des Andenkens, Fest des Schallens genannt.
- 10. Tishri jôm kipûr Versöhnungsfest. Strenger Fasttag. Die ersten 10 Tage des Jahres heißen "die 10 Bußtage".
- 15.-16. Tishri sukkôth Laubhüttenfest. Das Fest dauert 8 Tage.
- 22. Tishri *šemini aṣereth* der achte Tag der Versammlung. Laubhüttenende.
- 23. Tishri simchat tôrah Gesetzesfreude, Freudenfest der Thora.
- 14. Adar (im Schaltjahr 14. Veadar) pûrim Purim oder Loosfest, gehört zu den strengen Tagen.
- 15.-16. Nisan *chaq hammassôth* Fest der ungesäuerten Brote oder *pesach* Passahfest, dauert 8 Tage.
- 21.-22. Nisan; Passahende
- 6.-7. Sivan šabu'ôth Wochenfest ²⁸, Gesetzgebung auf Sinai.
- 9. Av tiš'ah be'ab Der 9. Av, Fasttag wegen der Zerstörung des Tempels; falls samstags, wird er auf Sonntag verlegt.

3 Der Islamische Kalender

3.1 Jahr, Monate, Ära

Der Islamische oder Mohammedanische Kalender beruht ausschließlich auf der Veränderung der Lichtgestalt des Mondes und ist völlig unabhängig von der Bewegung der Sonne. Er wird deshalb als freier Mondkalender bezeichnet. Das Jahr enthält genau 12 Monate zu je 30 oder 29 Tagen. Das

 $^{^{25}}$ 1. Mose [1,5]: ...DA WARD AUS ABEND UND MORGEN DER ERSTE TAG. – Der Tag beginnt also mit dem Abend. Ein weiterer Grund mag sein, daß man die Sichel des neuen Mondes, die den Beginn des Monats bestimmt, stets am Abend sichtet.

 $^{^{26}}MO = 0...DI = 1...MI = 2...DO = 3...FR = 4...SA = 5...SO = 6$

²⁷Vollständige Festkalender findet man bei [12] GINZEL und [27] SCHRAM

²⁸jüdisches Pfingstfest

Einschalten eines 13. Monats, um den Jahreswechsel an den Lauf der Sonne zu binden, ist durch den Koran ²⁹ streng verboten. Um den Monatswechsel im Einklang mit dem Erscheinen des Neulichts hilâl ³⁰ zu halten, werden innerhalb eines 30jährigen ³¹ Zyklus 11 Schalttage hinzugefügt, so daß es Gemeinjahre mit 354 Tagen und Schaltjahre mit 355 Tagen gibt. Schaltjahre sind die Jahre 2, 5, 7, 10, 13, 16, 18, 21, 24, 26 und 29 des Zyklus. Der Schalttag wird an das Schaltjahr angehängt – es ist der 30. Dhu l-Hijja.

Die Epoche des Islamischen Kalenders ist der 1. Muharram 1 bzw. der 16. Juli 622. Diese Epoche wird auch als Hedschra bezeichnet; $JD = 1\,948\,440$.

3.2 Die Berechnung des 0. Muharram

M sei die Jahreszahl der Hedschra, ferner

 $k_1 = 0,363636$ $k_2 = 9,28$ $a = (M+5) \mod 30$ $b = \inf(k_1 \ a + k_2) \mod 11$ $c = \inf(M/30)$ $d = M \mod 30$

Man erhält das JD des 0. Muharram:

JD(0.Muharram.M) = 1948085 + 10631c + 354d + b

Das entsprechende Jahr unseres Kalenders berechnet man angenähert mit der Formel $J=621,6+0,97022\ M$, wobei J das Jahr und den Jahresbruchteil des Gregorianischen Kalenders angibt, auf das der 0. Muharram fällt.

3.3 Monate und Tage

Zur Berechnung des JD eines beliebigen Tages im Islamischen Jahr ³² benutze man Tabelle 2. Da der Schalttag am Ende des Schaltjahres angefügt wird, ist die Tabelle für Gemeinjahr und Schaltjahr gleich. Das gesuchte Julianische Datum JD erhält man, wenn man die Monatsdifferenz und das Tagesdatum zum JD des 0. Muharram addiert.

²⁹9. Sure, §§36 und 37: Die Zahl der Monate ist nach göttlicher Vorschrift zwölf. So ist es aufgezeichnet im Buche Allahs, seit dem Tage, da Er Himmel und Erde erschuf. Vier von ihnen sind heilig... Die Verlegung des heiligen Monats auf einen anderen ist eine Zutat des Unglaubens. Die Ungläubigen sind hierin im Irrtum... — damit sind vor allem die Juden gemeint; die heiligen Monate sind Shawwal, Dhu l-Qa'dah, Dhu l-Hijja und Muharram.

³⁰Die Sichel des Neumondes kündigt traditionell den neuen Monat an. Sie ist kurz nach Sonnenuntergang in der Abenddämmerung sichtbar.

³¹Der 30jährige oder **arabische** Zyklus. Davon abweichend existiert noch als Volkskalender ein 8jähriger oder **türkischer** Zyklus mit 3 Schalt- und 5 Gemeinjahren. Dieser ist zwar leichter zu berechnen, seine Ungenauigkeit ist jedoch sehr viel größer.

 $^{^{32}}$ Die islamischen Monatsnamen $III\dots VI$ heißen auch Rabi-al-awwel, Rabi-al-achir, Jumada'l-ula und Jumada'l-achira.

Differenzen der Monatsnullten zum 0. Muharram							
Nr. 1	und Name des Monats	Diff.	Nr. und Name des Monats D				
I.	Muharram	0	VII.	Rajab	177		
II.	Safar	30	VIII.	Sha'ban	207		
III.	Rabi'I	59	IX.	Ramadan	236		
IV.	Rabi'II	89	Χ.	Shawwal	266		
V.	Jumada I	118	XI.	Dhu l-Qa'dah	295		
VI.	Jumada II	148	XII.	Dhu l-Hijja	325		

Tabelle 2: Die Monate des Islamischen Kalenders

Beispiel: Auf welches *JD* fällt MOHAMMEDS GEBURTSTAG des Jahres 1444 der Hedschra, also der 12. Rabi'I 1444? Nach obiger Formel erhält man für den 0. Muharram 1444:

$$JD (0.Muharram.1444) = 2 459 790$$

Nun findet man in Tabelle 2 den Wert 59 in der Spalte Rabi'I, resp. den Wert 12 aus dem Tagesdatum, also:

$$JD (12.Rabi'I.1444) = 2 459 790 + 59 + 12$$

= 2 459 861 [\text{\text{\text{\$\delta}\$} 5 mod 7]}

Dies ist ein Samstag (jôm el sabt).

3.4 Wochentage und Festtagskalender

So wie die Juden beginnen auch die Moslems den Tag mit dem Sonnenuntergang ³³. Diese Gepflogenheit ist sehr alt und geht schon auf die vorislamische Zeit zurück. Der erste Tag der Woche beginnt also schon am Samstag um 18:00 Uhr unserer Zeit.

Zur Umrechnung bilde man $JD \mod 7$; $(MO=0, DI=1, \dots SO=6)$. Die arabischen Tage ³⁴ der 7-Tage-Woche heißen:

jôm el aĥad (der erste Tag)	Sonntag
jôm el ithnain (der zweite Tag)	Montag
jôm eth thalâthâ (der dritte Tag)	Dienstag
jôm el arbâ (der vierte Tag)	Mittwoch
jôm el khamis (der fünfte Tag)	Donnerstag

 $\frac{\text{Tabelle:}}{\text{Wochentage}}$

³³weil die Tage des Monats vom *hilâl*, dem Neulicht oder dem ersten Erscheinen der schmalen Mondsichel gezählt werden; und diese bei Sonnenuntergang gesehen wird.

 $^{^{34}}$ In der Türkei werden offiziell die gleichen Bezeichnungen benutzt, jedoch sind im Volk andere Namen für die Wochentage üblich, und zwar: $p\bar{a}z\bar{a}r$ $g\ddot{u}n\ddot{u}$ (Markttag) = SO, $p\bar{a}z\bar{a}r$ ertesi (Tag nach dem Markt) = MO, $s\bar{a}ly$ (3. Tag) = DI, tscharschembe (4. Tag) = MI, tscharschembe (5. Tag) = DO, tschamba (Sabbat) = SA.

jôm el dshuma (Tag der Zusammenkunft) Freitag jôm el sabt (der siebente Tag) Samstag

Die Mohammedaner haben zwei Hauptfeste, das Fastenende $\hat{i}d$ el fitr 35 am Schluß des Ramadan und das Opferfest $\hat{i}d$ el nahr am Ende der Pilgerfahrt. Es folgt eine kurze Liste der islamischen Feiertage:

Feiertage

1. Muharram	Neujahr
10. Muharram. $asch \hat{u}ra$	Ermordung des Märtyrers Husseïn
16. Muharram.	Jerusalem wird zur $kibla$ erklärt
29. Safar.	Trompetenfest oder Fest der Welten
12. Rabi'I. meulud	Geburtstag Mohammeds
13. Rabi'I.	Gedächtnis des Todes Mohammeds
8. Jumada I.	Alis Geburtstag
15. Jumada I.	Alis Todestag
20. Jumada I. – E	Eroberung Konstantinopels (1453 n. Chr.)
20. Jumada II. G	eburtstag Fatimas, Tochter Mohammeds
4. Rajab. lailet el reghaïl	Nacht der Herrlichkeit
26. (29.) Rajab. <i>lailet el</i>	mirâdsch Nacht der Himmelfahrt
28. Rajab.	Mohammed erhält das Prophetentum
3. Sha'ban.	Geburtstag Husseïns
15. Sha'ban. lailet el bere	$\hat{a}t$ Nacht der Prüfung ³⁶
16. Sha'ban.	Mekka wird zur Kaaba erklärt
1. Ramadan.	Beginn des Fastenmonats
3. Ramadan.	Abraham erhält das Buch vom Himmel
4. Ramadan.	Der Koran wird der Welt gesandt
20. Ramadan.	Trauertag wegen der Niederlage vor Wien
27. (23.) Ramadan. laile	t el kadar Nacht der Allmacht,
	Mondspaltung
1., 2., 3. Shawwal. îd el j	ftr Großer Baïram – Fastenende
5. Dhu l-Qa'dah.	Abraham baut die Kaaba
8. Dhu l-Hijja.	Offenbarung der Stimme Gottes
10. Dhu l-Hijja. <i>îd el nal</i>	ir Kleiner Baïram – Opfertag

Außerdem werden der 13., 14. und 15. jeden Monats als glückliche Tage bezeichnet.

Sämtliche Festtage sind unbeweglich. Das genaue Datum von Mondspaltung und Himmelfahrt ist unter den islamischen Strömungen umstritten.

In den einzelnen islamischen Ländern gibt es nationale Feiertage, wie z.B. in Persien das Fest des Teiches am 18. Dhu l-Hijja. Daten und Feiertage der schwankenden nationalen Volkskalender können um bis zu einem Tag von der Rechnung abweichen.

 $^{^{35}\}mathrm{Die}$ Türken nennen das Fastenende großer Ba
ïram und das Opferfest kleiner Baïram.

³⁶Prüfung der guten und bösen Taten

4 Der Julianische Kalender

4.1 Jahr, Monate, Ära

Der Julianische Kalender, dessen 4jähriger Zyklus 3 Gemeinjahre mit 365 Tagen und 1 Schaltjahr mit 366 Tagen enthält, ist ein reiner Solarkalender. Seine Jahreslänge beträgt 365,25 Tage, was einem Fehler von einem Tag in 128 Jahren entspricht. Trotz seiner Ungenauigkeit hat dieser Kalender den großen Vorteil, daß er sich wegen seines kurzen Zyklus besonders einfach berechnen läßt 37 . Die Namen der Monate entnehme man der Monatstabelle, die für den Julianischen und den Gregorianischen Kalender gilt. Der Schalttag wird im Februar 38 eingeschoben. Der Julianische Kalender wird heute noch von den Orthodoxen Kirchen Rußlands und Griechenlands 39 benutzt. Die Differenz zum Gregorianischen Kalender beträgt in diesem Jahrhundert 13 Tage. Epoche des Julianischen Kalenders ist der 1. Januar 45 v. Chr.; JD=1 704 987.

4.2 Berechnung von 0. Januar und julianischem Ostersonntag

Es sei J das Jahr des Julianischen Kalenders, ferner

$$a = J \mod 19$$

 $b = J \mod 4$
 $c = J \mod 7$
 $d = (15 + 19 \ a) \mod 30$
 $e = (6 + 2 \ b + 4 \ c + 6 \ d) \mod 7$
 $f = \inf(J/4)$
 $g = \inf((b+3)/4)$

dann berechnet man den Jahreswechsel mit

$$JD$$
 $(0.Januar.J) = 1$ 721 057 + 1 461 f + 365 b + g und Ostern mit

 $JD\ (Ostersonntag) = JD\ (0.Januar.J) + d + e - g + 82,$

Das ist der $(22 + d + e - g)^{te}$ März oder $(d + e - g - 9)^{te}$ April; man beachte, daß der Julianische meist vom Gregorianischen Ostersonntag ⁴⁰ abweicht.

 $^{^{37}\}mathrm{So}$ bildet er die Grundlage der Julianischen Periode und des Julianischen Datums von [26] Joseph Scaliger.

³⁸Schalttag ist der 24. Februar (A.D. BIS SEXTUM KAL. MARTIAS), die regulären Tage vom 24. bis 28. Februar werden im Schaltjahre auf den nächsten Tag verschoben und in 25. bis 29. Februar umbenannt. Die entsprechenden Heiligennamen werden auch einen Tag später gelegt. Es fällt z.B. der Name des hl. Matthias im Gemeinjahr auf den 24. und im Schaltjahr auf den 25. Februar.

³⁹und anderen regionalen Orthodoxen Kirchen

 $^{^{40}}$ Das Jahr 1808 ist eine der Ausnahmen. Hier fällt das julianische Osterfest auf den 5. April (a.St.) und das gregorianische Ostern auf den 17. April (greg.), was zufällig ein

4.3 Monate und Tage

Zur Ermittlung des JD eines beliebigen Tages im Julianischen Jahr bestimme man zunächst, ob es sich um ein Gemein- oder ein Schaltjahr handelt und suche dann in Tabelle 3 die Monatsdifferenz auf. Schaltjahre sind alle Jahre, die sich ohne Rest durch 4 teilen lassen. In Jahren vor Christi Geburt benutze man die astronomische Jahreszählung ⁴¹ zur Bestimmung der Schaltjahre. So sind die Jahre 1, 5, 9, 13... vor Christo Schaltjahre, weil sie den astronomischen Jahren 0, -4, -8, -12... entsprechen. Man addiere dann das Tagesdatum und die Monatsdifferenz zum JD des 0. Januar.

Tabelle 3: Gemeinsame	Monatstabelle	für	den	Julianischen	und	den
Gregorianischen Kalen	der					

0	1 - Softamber 1 arenaer									
	Differenzen der Monatsnullten zum 0. Januar									
Nr. u. Monatsname		GemJ	SchJ	Nr. u. Monatsname		GemJ	SchJ			
I.	Januar	0	0	VII.	Juli	181	182			
II.	Februar	31	31	VIII.	August	212	213			
III.	März	59	60	IX.	September	243	244			
IV.	April	90	91	Χ.	Oktober	273	274			
V.	Mai	120	121	XI.	November	304	305			
VI.	Juni	151	152	XII.	Dezember	334	335			

 $GemJ = Gemeinjahr \dots SchJ = Schaltjahr$

Beispiel: Man berechne das JD von 0. Januar und Ostersonntag des Jahres 2001 im Julianischen Kalender.

Nach den Formeln in Abschnitt 4.2 erhält man:

a = 6, b = 1, c = 6, d = 9, e = 2, f = 500 und g = 1; also:

 $JD\ (0.Jan.2001\ jul.) = 2\ 451\ 923\ [\cong 5\ {
m mod}\ 7];$ einen Samstag und $JD\ (Ostern.\ jul.) = 2\ 452\ 015\ ---$ der 2. $April\ 2001\ jul.$

Dieses Datum stimmt rein zufällig mit dem gregorianischen Osterfest, dem 15. April~2001~greg. überein.

4.4 Wochentage und Festtagskalender

Die Namen der Wochentage sind astrologischen Ursprungs. So übernahmen die Römer und viele europäische Völker von den Babyloniern den Brauch, die

und derselbe Tag ist — JD=2 381 525. Dieses Ereignis tritt 1600...1999 in etwa 37%, 2000...2399 in etwa 22% der Jahre ein, Tendenz fallend.

 $^{^{41}}$ Da es in der sog. historischen Jahreszählung kein Jahr 0 gibt, also das Jahr 1 dem Jahr 1 v. Chr. folgt, eignet sie sich nur bedingt für mathematische Berechnungen. Die Astronomen führten deshalb die astronomische Jahreszählung ein, die das Jahr 1 v. Chr. zum Jahr 0 macht. Alle vorhergehenden Jahre unterscheiden sich also historisch um den Wert 1 und im Vorzeichen von der astronomischen Zählung: z. B. 333 v. Chr. = -332.

sieben Tage ⁴² der Woche den sieben Wandelsternen ⁴³ zuzuordnen. Zur Bestimmung des Wochentages aus dem JD berechne man dessen Rest modulo 7 (Rest 0 = Montag etc.).

Im Julianischen Kalender gibt es sowohl feststehende als auch bewegliche Feiertage ⁴⁴. Es folgt eine Liste der wichtigsten Feste der Orthodoxen Kirche.

 $\begin{array}{c} \underline{\text{Tabelle:}} \\ \text{Feier-} \\ \text{tage} \\ \lhd \lhd \lhd \end{array}$

Feststehende Feiertage: 6. Jan. Christi Taufe; 2. Febr. Christi Darstellung im Tempel; 25. März Mariæ Verkündigung; 6. Aug. Christi Verklärung; 15. Aug. Mariæ Entschlafung; 8. Sept. Mariæ Geburt; 14. Sept. Kreuzerhöhung; 21. Nov. Einführung Mariæ in den Tempel; 25. Dez. Christi Geburt.

Bewegliche Feiertage: [Ostern - 7] Christi Einzug in Jerusalem (Palmsonntag); [Ostern] Christi Auferstehung; [Ostern + 39] Christi Himmelfahrt; [Ostern + 49] Hl. Dreifaltigkeit (Pfingsten).

Man beachte stets, daß diese Feste nach dem Julianischen Kalender begangen werden, der auch als alter Stil (a.St.) bezeichnet wird.

5 Der Gregorianische Kalender

5.1 Jahr, Monate, Ära

Der Gregorianische Kalender besitzt auf den ersten Blick sehr große Ähnlichkeit mit dem Julianischen Kalender, aus dem er hervorgegangen ist. So können z.B. die Monatsdifferenzen aus derselben Tabelle entnommen werden. Auch die Feiertage stimmen, abgesehen von einer teilweise unterschiedlichen Bezeichnung, weitgehend überein.

Beim genaueren Hinsehen erweist sich aber, daß die Gregorianische Kalenderreform eine Erschwerung der Berechnung des Osterfestes mit sich brachte. Auch die Bestimmung des JD des 0. Januar ist etwas komplizierter geworden. Die gregorianische Schaltregel ⁴⁵ besagt, daß alle durch 4 teilbaren Jahre

⁴²Der Tag beginnt um 0:00 Uhr Mitternacht.

 $^{^{43}}$ Das sind Sol, Luna, Mars, Mercurius, Jupiter, Venus und Saturnus – zugleich die Namen von römischen Göttern. In Germanien wurden einige dieser Namen durch die alten germanischen Götter ersetzt, z.B. Jupiter durch Donar/Thor, Venus durch Freia, Mars durch Tui, Mercurius durch Wodan – sowie Sol durch Sonne und Luna durch Mond. In den heutigen Wochentagsnamen ist dies ohne weiteres ersichtlich. \nearrow Anhang A.3 auf S. 32

⁴⁴die sich nach dem Datum des Ostersonntags richten

⁴⁵Deinde, ne in posterum a XII. Kalendas Aprilis æquinoctium recedat, statuimus bissextum quarto quoque anno (uti mos est) continuari debere, præterquam in centesimis annis; qui, quamquis bissextiles antea semper fuerint, qualem etiam esse volumus annum MDC, post eam tamen qui deinceps consequentur centesimi non omnes bissextiles sint, sed in quadringentis quibusque annis primi quique tres centesimi sine bissexto transigantur, quartus vero quisque centesimus bissextiles non sint. Anno vero MM, more consueto dies bissextus

Schaltjahre zu 366^d sind; mit Ausnahme der durch 100 aber nicht durch 400 teilbaren Jahre. Alle anderen Jahre sind Gemeinjahre zu 365^d . Dadurch wird die mittlere Jahreslänge mit 365,2425 Tagen bestimmt, was einem Fehler von einem Tag in etwa 30~000 Jahren entspricht.

Epoche des Gregorianischen Kalenders ist der 15. Oktober 1582 greg. — JD = 2 299 161. Das entspricht dem 5. Oktober 1582 a.St.. Die Kalenderdifferenz ⁴⁶ betrug also bei Einführung des Gregorianischen Kalenders 10^d ; diese Differenz erhöht sich stetig und beträgt zur Zeit 13^d .

5.2 Berechnung des 0. Januar

G sei die Jahreszahl des Gregorianischen Kalenders, ferner

$s = \operatorname{int}(G/100)$	$s_1 = G \bmod 100$	$s_2 = \operatorname{int}(1 - s_1/100)$
$p = \operatorname{int}(G/400)$	$p_1 = G \bmod 400$	$p_2 = \operatorname{int}(1 - p_1/400)$
$q = \operatorname{int}(G/4)$	$b = G \mod 4$	$q_2 = \operatorname{int}(1 - b/4)$
$r = s \mod 4$	$r_1 = 3 p + r - 2$	$r_2 = q_2 + p_2 - s_2$

Das Datum des Jahreswechsels errechnet sich dann wie folgt:

$$JD (0.Januar.G) = 1721058 + 1461q + 365b - r_2 - r_1$$

Das Jahr G ist Schaltjahr, wenn $r_2=1$ — bzw. Gemeinjahr, wenn $r_2=0$ ist. Die Variable r_1 gibt die Differenz zwischen Julianischem und Gregorianischem Kalender für den gregorianischen 0. Januar des Jahres G in Tagen an. Die Größe s (Säkulum) gibt die Jahrhundertziffern an und wird — wie auch b und r_2 — noch zur Berechnung des Osterfestes benötigt.

5.3 Berechnung des gregorianischen Ostersonntags

Das gregorianische Osterfest wird nach einem Algorithmus ⁴⁷ berechnet, der dem für das julianische Ostern sehr ähnelt, wobei die Größen M und N im Julianischen Kalender konstant (M=15,N=6), im Gregorianischen Kalender aber variabel sind.

Es gilt für M und N gregorianisch:

$$M = (15 + s - int(s/3) - int(s/4)) \mod 30$$

$$N = (4 + s - int(s/4)) \mod 7$$

Das ergibt für die Jahre von 1582 bis 2599:

INTERCALETUR, FEBRUARIO DIES XXIX CONTINENTE, IDEMQUE ORDO INTERMITTENDI INTERCALANDIQUE BISSEXTUM DIEM IN QUADRINGENTIS QUIBUSQUE ANNI PERPETUO CONSERVETUR.

⁴⁶Papst Gregor XIII. ordnete am 14. Februar 1582 in der Bulle *Inter gravissimas*... an, daß 10 Tage zu streichen sind. Diese Streichung erfolgte in den meisten katholischen Ländern am 4. Oktober 1582, dem sogleich der 15. Oktober folgte — in einigen anderen Ländern am 1. Januar 1583 oder später. Die Folge der Wochentage wurde davon nicht berührt. Es wurde erreicht, daß das Frühlingsequinoktium wieder auf den 21. März fiel.

⁴⁷ > [11] CARL FRIEDRICH GAUSS, Berechnung des Osterfestes.

```
1582 \dots 1699
              M = 22, N = 2
                                      2100...2199 \quad M = 24, N = 6
1700 \dots 1799
                                      2200...2299
              M = 23, N = 3
                                                     M = 25, N = 0
1800 . . . 1899
              M = 23, N = 4
                                      2300 \dots 2399
                                                     M = 26, N = 1
1900 \dots 1999
              M = 24, N = 5
                                      2400 \dots 2499
                                                     M = 25, N = 1
2000 \dots 2099
              M = 24, N = 5
                                      2500 \dots 2599
                                                     M = 26, N = 2
```

Es sei G die gregorianische Jahreszahl, ferner

```
a = G \mod 19

b = G \mod 4 [siehe oben]

c = G \mod 7

d = (19 \ a + M) \mod 30

e = (2 \ b + 4 \ c + 6 \ d + N) \mod 7

f = 1 - r_2
```

g=0 wenn d=29 und e=6 und $(11\ M+11)$ mod 30<19 dann g=7 wenn d=28 und e=6 und $(11\ M+11)$ mod 30<19 dann g=7 $JD\ (Ostern.greg)=JD\ (0.Januar.G)+d+e-f-g+82$, Das ist der $(22+d+e-g)^{te}$ März oder der $(d+e-g-9)^{te}$ April gregorianisch. Diese Berechnungsvorschrift ist völlig allgemeingültig.

Beispiel: Man berechne das JD von 0. Januar und Ostersonntag des Jahres 2001 im Gregorianischen Kalender.

Nach den Formeln in Abschnitt 5.2 erhält man: $JD (0.Januar.2001) = 2 \ 451 \ 910, \text{ sowie aus den Formeln in diesem}$ Abschnitt $a = 6, b = 1, c = 6, d = 18, e = 6, f = 1 \ \text{und } g = 0; \text{ also:}$ $JD (Ostern.greg) = 2 \ 452 \ 015 \ \text{— oder den } 15. \text{ April } 2001 \ greg.$ Dies ist das gleiche JD wie im julianischen Beispiel. Im Jahr 2001 wird Ostern also in beiden Kalendern gleichzeitig gefeiert, was die

5.4 Monate und Tage

Ausnahme ist.

Will man für einen beliebigen Tag im gregorianischen Jahr, der vom 0. Januar verschieden ist, das JD berechnen, muß man zum JD (0.Januar.G) noch die Monatsdifferenz und das Tagesdatum addieren. Die Monatsdifferenz entnehme man der Tabelle 3 auf Seite 14. Dabei ist die Spalte SchJ zu benutzen wenn $r_2 = 1$ ist, sonst die Spalte GemJ.

Beispiel Welches JD hat der 15. April 2001? Nach den Formeln aus Abschnitt 5.2 erhält man: $JD \ (0.Januar.2001) = 2 \ 451 \ 910 \ \text{und} \ r_2 = 0$, man addiere das Tagesdatum 15 und die Monatsdifferenz 90 aus Tabelle 3 und erhält: $JD \ (15.April.2001) = 2 \ 452 \ 015$

5.5 Wochentage und Festtagskalender

Von der gregorianischen Kalenderreform wurden die Wochentage nicht berührt, sie werden also genau wie im Julianischen Kalender aus dem Rest des JD mod 7 ermittelt (MO=0). Die wichtigsten Feiertage der römisch/katholischen und der reformierten 48 Christen sind:

Tabelle:
Feiertage

▷▷▷

Feststehende Feiertage: 1. Januar Neujahr, 6. Januar Epiphania, 2. Februar Mariæ Lichtmeß, 25. März Mariæ Verkündigung, 3. Mai Kreuzerfindung, 15. August Mariæ Himmelfahrt, 8. Dezember Mariæ Empfängnis, 25. Dezember Weihnachten.

Bewegliche Feiertage: [Ostern - 7] Palmsonntag; [Ostern] Ostersonntag; [Ostern + 39] Christi Himmelfahrt; [Ostern + 49] Pfingstsonntag; [Ostern + 59] Fronleichnam.

Diese Feiertage werden nach dem Gregorianischen Kalender begangen.

6 Der Chinesische Kalender

6.1 Jahr, Monate, Dynastien und Zyklen

Das Verzeichnis der chinesischen Kaiser und Dynastien reicht zurück bis ins Jahr 2698 v. Chr. und beginnt mit der Periode der 5 Wuti. Es folgen u.a. die Dynastien der Han, Sung, Liang, Mongolen, Ming, Mandschu und Tataren. Dies ist für die Berechnung chinesischen Kalenders 万年书 wan-nien-schu ⁴⁹ jedoch weit weniger von Bedeutung als der 60jährige Zyklus 港門子 hua-kia-tsě.

Das chinesische Jahr $\not\equiv$ *nien* ⁵⁰ beginnt etwa im Januar/Februar des Gregorianischen Kalenders. Man kann also jedem chinesischen Jahr genau ein Gregorianisches Jahr zuordnen, abgesehen vom unterschiedlichen Neujahrsdatum. Das 1. Jahr des 1. Zyklus war das Jahr 2637 v. Chr., also das Jahr der Thronbesteigung ⁵¹ des legendären Kaisers HOANG-TI. Das Jahr 1503 war folglich das 0. Jahr des 70. Zyklus.

Jahr J und Zyklus Z der Chinesen für ein Gregorianisches Jahr G bestimme man nach folgender Formel:

$$J = (G - 1503) \mod 60$$

 $Z = \inf((G - 1503)/60) + 70$

⁴⁸In den unterschiedlichen nationalen Reformkirchen kann es abweichende Feiertage geben. ⁴⁹Das wan-nien-schu, das Buch der zehntausend Jahre, wurde als offizieller Staatskalender der Chinesen inzwischen vom Gregorianischen Kalender abgelöst, ist aber im Alltag – z.B. zur Berechnung der Feiertage – noch immer in Gebrauch.

⁵⁰Im chinesischen Volksglauben ist das *nien* ein gefräßiges Monster, das am letzten Tag des Jahres in den Häusern nach Opfern sucht. Es fürchtet die Farbe Rot. So streicht man die Türen rot an und brennt um Mitternacht Feuerwerkskörper ab, um es zu vertreiben.

⁵¹nach einigen Quellen war das im 0. Jahr des 0. Zyklus (2698 v. Chr.)

Nach alter chinesischer Tradition hat jedes Jahr J des 60jährigen Zyklus einen zweiteiligen Namen, bestehend aus einem himmlischen und einem irdischen Element 52 , den man der Tabelle 4 entnehmen kann.

Das Gregorianische Jahr 2001 z.B. ist das 18. Jahr des 78. Zyklus. Es beginnt in China folglich das Jahr $\pm E$ sin-szě des Metalls und der Schlange.

	Но	$_{ m lz}$	Feu	ıer	Er	de	Met	all	Wa	sser	
$ts\check{e}$	1		13		25		37		49		Ratte
tscheu		2		14		26		38		50	Ochse
yin	51		3		15		27		39		Tiger
mao		52		4		16		28		40	Hase
schin	41		53		5		17		29		Drache
$sz\check{e}$		42		54		6		18		30	Schlange
ngu	31		43		55		7		19		Pferd
wei		32		44		56		8		20	Schaf
schin	21		33		45		57		9		Affe
yeu		22		34		46		58		10	Hahn
$si\ddot{u}$	11		23		35		47		59		Hund
hai		12		24		36		48		0	Schwein
	kia	yi	ping	ting	wu	ki	keng	sin	jin	kuei	

Tabelle 4: Die Jahre des 60jährigen Zyklus

6.2 Die Konstruktion eines Chinesischen Kalenders

Der Chinesische Kalender ist ein Lunisolarkalender. Grundlage dieses Kalenders bilden zum einen die Neumonde, d.h. die wahren Konjunktionen von Sonne und Mond — zum anderen der jährliche Lauf der Sonne durch die Ekliptik, d.h. der Eintritt der Sonne in die Zodiakalzeichen 静氣 tsie-ki 53 . Um einen Jahreskalender der Chinesen zu konstruieren muß man beide Ereignisse — Neumonde und Sonneneintritte — in Pekinger Zeit $(UT+0,3235\ Tage)$ berechnen. Jahresanfang 新年 sin-nien des Kalenders ist der Neumond, der zwischen die chinesischen Zodiakalzeichen $ts\check{e}=300^o$ und $hai=330^o$ Sonnenlänge λ_{\odot} fällt. Das ist die Zeit zwischen 20. Januar und 19. Februar gregorianisch. Da sich die Monatsanfänge nach den tatsächlichen 54 astronomischen Erscheinungen richten, enthalten die Monate 30 oder 29 Tage, jedoch in unregelmäßiger Folge. Die Jahreslänge des Gemeinjahres beträgt 354 oder 355 Tage, die des Schaltjahres meist 383 oder 384 Tage; das Jahr

⁵²Die himmlischen Elemente sind Holz, Feuer, Erde, Metall und Wasser; die irdischen Ratte, Ochse, Tiger, Hase, Drache, Schlange, Pferd, Schaf, Affe, Hahn, Hund und Schwein.

 $^{^{53}}$ Das sind die 12 chinesischen Sternbilder ot
ot hai, 戌 $si\ddot{u}$, 酉 yeu, 申 schin, 未 wei etc., deren Namen mit denen der 12 irdischen Elementen übereinstimmen.

⁵⁴und nicht nach den zyklischen, wie in den meisten anderen Kalendersystemen

1642 n.Chr. hatte die außergewöhnliche Länge von 385 Tagen.

 $\frac{\text{Tabelle:}}{\text{Monats-}}$ namen $\triangleright \triangleright \triangleright$

Die Monate yüe werden durch die Ordnungszahlen 55 benannt, sie heißen

 $I=tsching\ y\ddot{u}e,\ II=\ddot{o}l\ y\ddot{u}e,\ III=san\ y\ddot{u}e,\ IV=sz\check{e}\ y\ddot{u}e,\ V=yu\ y\ddot{u}e,\ VI=lu\ y\ddot{u}e,\ VII=tsi\ y\ddot{u}e,\ VIII=pa\ y\ddot{u}e,\ IX=kieu\ y\ddot{u}e,\ X=schi\ y\ddot{u}e,\ XI=schi-i\ y\ddot{u}e\ und\ XII=schi-\ddot{o}l\ y\ddot{u}e.$

6.2.1 Die Berechnung der Neumonde nach Peking-Zeit

Da Peking ca. 7^h 46^{min} östlich von Greenwich liegt, tritt der Neumond nach Pekinger Ortszeit scheinbar um diese Zeitspanne später ein als nach UT. Der folgende Algorithmus ergibt das JD des Neumondes mit dem Tagesbruchteil 56 des Meridians von Peking. Er rechnet für den Zeitraum von 1600 bis 2400 n.Chr. mit einer Genauigkeit von $\pm 0.015^d$ ($\approx 20^{min}$).

G sei die Jahreszahl gregorianisch, ferner

 $n = \inf(12,368266 G - 24137,71)$ a = 0,4505 9106 n + 4,2404 b = 0,5079 8335 n + 4,1494 c = 1,0706 0240 n + 0,0156 $T_a = 0,01687 \sin 2a - 0,40854 \sin a$ $T_b = 0,174 \sin b$ $T_c = 0,01 \sin c$ $T_d = 2 433 891,1284 + 29,53059 n$ $JD (Neumond.Peking) = T_a + T_b + T_c + T_d$

Dies ist der Januarneumond des Jahres G. Die weiteren Neumonde des Jahres und diejenigen von Januar/Februar des Folgejahres erhält man, indem man mit n+1, n+2, ... n+13 in die Formeln eingeht.

6.2.2 Die Eintritte der Sonne in die Zodiakalzeichen

Die Sonne erreicht auf ihrer jährlichen Bahn in der Ekliptik in fast jedem Mondmonat ein neues Zodiakalzeichen. Der genaue Zeitpunkt des Eintritts ist eine wesentliche Grundlage für den chinesischen Kalender und wird durch die Länge der Sonne λ_{\odot} bestimmt. Natürlich muß diese Zeit für den Meridian von Peking angegeben werden. G sei die Jahreszahl gregorianisch, ferner

$$Y = (G - 2000)/100$$

⁵⁵Fallen zwei Monate in ein ein tsie-ki, so gilt der erste von ihnen als Schaltmonat und wird mit der Zahl des vorhergehenden Monats und dem Zusatz 闰月 jun yüe bezeichnet.

 $^{^{56}\}mathrm{Man}$ beachte, daß das Julianische Datum ab 12:00 Uhr mittags zählt (Tagesbruchteil ,0000). Alle Daten mit einem Tagesbruchteil über ,5000 gehören schon zum folgenden Tag.

77 . 1

Die Sonneneintritte berechnet man sodann nach folgender Tabelle — die Genauigkeit beträgt für den Zeitraum von 1600 bis 2400 n.Chr. $\pm 0,01^d$ ($\approx 15^{min}$).

Tabelle 5: Pekinger Sonneneintritte in die Zodiakalzeichen

7 D C" D 1

	λ_{\odot}	Ze	ichen	JD für Peking
***	300^{o}	子	$ts\check{e}$	$2\ 451\ 564, 5852 + 36\ 524, 2754\ Y - 0,0002\ Y^2$
\mathcal{H}	330^o	女	hai	$2\ 451\ 594, 1753 + 36\ 524, 2622\ Y + 0,0002\ Y^2$
\mathcal{V}	0^o	戌	$si\ddot{u}$	$2\ 451\ 624, 1347 + 36\ 524, 2374\ Y + 0,0005\ Y^2$
8	30^{o}	酉	yeu	$2\ 451\ 654,5960+36\ 524,2073\ Y+0,0005\ Y^2$
I	60^{o}	申	schin	$2\ 451\ 685, 5612 + 36\ 524, 1798\ Y + 0,0004\ Y^2$
69	90^{o}	未	wei	$2\ 451\ 716,8928+36\ 524,1628\ Y+0,0000\ Y^2$
Ω	120^{o}	午	ngu	$2\ 451\ 748,3463+36\ 524,1614\ Y-0,0005\ Y^2$
m	150^{o}	巳	$sz\check{e}$	$2\ 451\ 779,6404+36\ 524,1758\ Y-0,0009\ Y^2$
<u>ડ</u>	180^{o}	爲	schin	$2\ 451\ 810,5418+36\ 524,2019\ Y-0,0011\ Y^2$
M,	210^{o}	<i>y</i> p	mao	$2\ 451\ 840,9308+36\ 524,2320\ Y-0,0012\ Y^2$
1	240^{o}	寅	yin	$2\ 451\ 870,8289 + 36\ 524,2582\ Y - 0,0010\ Y^2$
る	270^{o}	#	tscheu	$2\ 451\ 900,3841+36\ 524,2739\ Y-0,0006\ Y^2$

6.2.3 Die Vergleichstabelle des Chinesischen Jahres

Zur Konstruktion eines Kalenders für das chinesische bürgerliche Jahr muß man Sonneneintritte und Neumonde in einer Vergleichstabelle miteinander kombinieren. Dabei gelten folgende Regeln:

- Monatsanfang ist der Tag des Neumondes. Der Tag beginnt um 0:00 Uhr Pekinger Ortszeit (Tagesbruchteil JD = .5000).
- Jahresanfang ist der Neumondstag, der nach dem Zodiakalzeichen $ts\check{e}$ (300° in der Ekliptik) eintritt.
- Fallen zwei Neumonde in ein Zodiakalzeichen, so gilt der erste von ihnen als Schaltmonat. Er wird mit der Nummer des vorhergehenden Monats und dem Zusatz jun bezeichnet. Fällt der Neumond genau auf den Tag des Zodiakaleintrittes, so wird er noch zum alten Zodiakalzeichen gezählt.

Probleme kann es geben, wenn der Neumond oder der Zodiakaleintritt nahe Mitternacht ($Bruchteil_{JD} = .48....52$) liegt. Dann könnte der Monatsbeginn um einen Tag bzw. der Schaltmonat um einen Monat abweichen ⁵⁷.

 $^{^{57}}$ Das 万年书 wan-nien-schu gründet sich auf britische astronomische Tafeln, welche aus dem VICTORIAnischen Zeitalter stammen. Deren Genauigkeit beträgt nur etwa $\pm 10^{min}$.

Zodiaka		Neumonde	JD des
eintritte	e	für Peking	Monatsersten
$ts\check{e}$	2451 929,83	2451 934,37	2451 934 <i>I</i> .
hai	959,42	964,16	2451 964 II.
$si\ddot{u}$	$989,\!38$	993,88	2451 994 <i>III</i> .
yeu	$2452\ 019,\!84$	2452 023,47	2452 023 <i>IV</i> .
schin	$050,\!80$	$052,\!95$	2452 053 $IV. jun \stackrel{\text{SCHALT}}{\text{MONAT}}$
		082,32	2452 082 <i>V</i> .
wei	082,13	111,64	2452 112 <i>VI</i> .
ngu	113,59	140,93	2452 141 <i>VII</i> .
$sz\check{e}$	144,88	170,25	2452 170 VIII.
schin	175,78	199,62	2452 200 <i>IX</i> .
mao	$206,\!17$	229,10	2452 229 X.
yin	236,07	258,69	2452 259 XI.
tscheu	$265,\!63$	288,38	2452 288 XII.

Beispiel: Man konstruiere den Chinesischen Kalender, der dem Jahr 2001 im Gregorianischen Kalender entspricht.

An diesem Beispiel sieht man, daß der Neumond stets den Tag des Monatsersten bestimmt, während der Zodiakaleintritt festlegt, welcher Monat gerade begonnen hat.

6.3 Die chinesische 28-Tage Woche und die Feiertage

Die Chinesen haben keine 7-Tage-Woche wie die meisten anderen Kulturen, sondern sie ordnen die Tage 58 den 28 Charakteren der Mondstationen 59 zu. Um zu erfahren, welchem Charakter ein Tag entspricht, berechne man JD mod 28 und lese die Mondstation aus Tabelle 6 ab. Da die 7tägige Woche genau 4mal in diesem Zyklus enthalten ist, kann man jeder Mondstation einen Wochentag zuordnen. Einige chinesische Charaktere kann man nur mit ihren Schriftzeichen 60 genau bestimmen, da sich deren Aussprache kaum unterscheidet. Deshalb können die deutschen Transskriptionen in einigen Fällen gleich lauten. Es folgt die Tabelle der Mondstationen 61 und die Liste der wichtigsten chinesischen Feiertage.

1. Monat, 1. Tag, yüan-ji oder sin-nien — Die Neujahrsfeier geht bis zum Laternenfest. Besondere Bettage sind der 2., 5., 7., 9. und 14. Tag, an denen den Ahnen geopfert wird. Die ersten zehn Tage heißen: 1. ki-ji Hahntag, 2. k'üan-ji Hundstag,

Tabelle:
Feiertage

⁵⁸Die Chinesen zählen den Tag ab Mitternacht.

⁵⁹Das sind 28 chinesische Sternbilder in der Ekliptik, die der Mond innerhalb eines Monats durchläuft. Die Mondstationen werden fortlaufend weitergezählt, unabhängig vom wahren Mondort.

⁶⁰Die chinesischen Schriftzeichen findet man im Anhang A.2 auf S. 30

 $^{^{61}}$ Die erste Mondstation heißt kio = Horn, \nearrow Anhang A.2 auf S. 30

Rest	Zeichen	Bedeutung	Rest	Zeichen	Bedeutung	Tag
0	wei	First	14	tschang	Netz	МО
1	schi	Opferherd	15	yi	Flügel	DI
2	pi	Mauer	16	tschen	Wagen	MI
3	kuei	Sandale	17	kio	Horn	DO
4	leu	Schnitterin	18	k' ang	Hals	FR
5	wei	Getreidewächter	19	ti	Fundament	SA
6	mao	Untergehende Sonne	20	fang	Gemach	SO
7	pi	Netz	21	sin	Herz	МО
8	tsui	Mund	22	wei	Schweif	DI
9	ts'a n	der Erhabene	23	ki	Mistkorb	MI
10	tsing	Brunnen	24	teu	Scheffel	DO
11	kuei	die Manen	25	nieu	Rind	FR
12	lieu	Weide	26	$ni\ddot{u}$	Jungfrau	SA
13	sing	Gestirn	27	$hi\ddot{u}$	Grabhügel	SO

Tabelle 6: Die 28 Mondstationen

- 3. tschu-ji Schweintag, 4. yang-ji Schaftag, 5. nien-ji Rindtag,
- 6. ma-ji Pferdtag, 7. jen-ji Menschentag, 8. ku-ji Getreidetag,
- 9. mâ-ji Hanftag, 10. teu-ji Hülsenfrüchtetag
- 15. Tag, sai-teng oder hua-teng Laternenfest. Glückstag. Altes Fest schon unter der Tang -Dynastie
- 2. Monat, 1. Tag MITTLERER GLEICHMÄSSIGER FESTTER-MIN; Wünsche für das Gedeihen der Saaten
 - 2. Tag, fu-schen-t'an Geburtstag der Laren, des Erdgottes. Reichtum bringender Tag
 - $\lambda_{\odot} = 0^o \text{Frühlingsanfang}$
- 3. Monat, 3. Tag, ts'ing-ming-tsie Das Gräberfest
- **5. Monat,** 5. Tag, tsie-hao-t'ien-tschung DRACHENBOOTFEST. Sommerfest. Wettrudern in Booten
- 6. Monat, 6. Tag, t'ien-kuang Das Lüften der Kleider
- **7. Monat,** 1.-15. Tag, *yü-lan-sching-huei* mehrere Opfertage zu Ehren der abgeschiedenen Seelen
- 8. Monat, $\lambda_{\odot} = 180^{\circ}$ Herbstmittefest
- **9. Monat,** 9. Tag, tschung-tschang-tsie Fest des Hügelbesuchs, Vergnügungsfest
- 11. Monat, $\lambda_{\odot}=270^o$ tscheng-tschi-tsie Fest des Kürzesten Tages, Opfer von Reismehlkügelchen
- **12.** Monat, 16. Tag, nien-tsin-liao letzter Opfertag.
 - 24. Tag, sie-tsao HIMMELFAHRT DER GÖTTER, Anbetung des tsao-schen
 - letzter Tag (29. oder 30.), scheu-sui NEUJAHRSERWARTUNG

A ANHANG

A Anhang

A.1 Tabellen der Monatsanfänge (1990...2030 greg.)

Zur Bestimmung des JD für ein Datum der Gegenwart kann man die folgenden Tabellen benutzen. Dazu lese man einfach das JD des Monatsnullten aus der Tabelle ab und addiere das Tagesdatum.

Zur Ermittlung des entsprechenden Kalenderdatums aus dem JD suche man Monat und Jahr mit dem nächstkleineren JD aus der Tabelle. Die Differenz zwischen JD und JD (Tabelle) ist das Tagesdatum.

Natürlich kann man an Hand der Tabellen auch die gegebenen Algorithmen für die verschiedenen Kalendersysteme überprüfen.

Beispiel: Am 11. August 1999 (greg.) findet in München eine totale Sonnenfinsternis statt.

Man bestimme den Wochentag und die Kalenderdaten des Jüdischen, des Islamischen, des Julianischen und des Chinesischen Kalenders mit Hilfe der Tabellen.

JD	(~11.Aug.1999~greg.~)	$)=2\ 451\ 402$
----	-----------------------	-----------------

Tabelle:Kalender	${\bf Tag. Monat. Jahr}$	=	JD
Tab.7: Jüdischer	0.Av.5759	=	2 451 373
	29.Av.5759	=	$2\ 451\ 402$
Tab.8: Islamischer	0.Rabi'II.1420	=	2 451 374
	28.Rabi'II.1420	=	$2\ 451\ 402$
Tab.9: Julianischer	0.Juli.1999	=	2 451 373
	29.Juli.1999	=	$2\ 451\ 402$
Tab.10: Gregorianischer	0.Aug.1999	=	2 451 391
	11. Aug. 1999	=	$2\ 451\ 402$
Tab.11: Chinesischer	0.VII.Hase		2 451 401
	1.VII.Hase	=	$2\ 451\ 402$

Die Division von 2 451 402 durch 7 ergibt den Rest 2. Die Sonnenfinsternis findet also an einem Mittwoch statt.

Die Division durch 28 ergibt ebenfalls den Rest 2. Der Wochentag der Chinesischen 28-Tage-Woche ist demnach pi = Mauer.

Wie man im Beispiel sieht, fällt der Neumond ⁶² im Jüdischen und im Islamischen Kalender stets auf die letzten Tage des Monats, also auf den 27. bis 30., im Chinesischen Kalender stets auf den Monatsersten. Die Kalenderdifferenz zwischen Julianischem und Gregorianischem Kalender beträgt 13 Tage. In den folgenden Tabellen wurden aus Platzgründen die Monatsnamen durch römische Zahlen ersetzt. Die Namen entnehme man den Monatstabellen (siehe Tabellenverzeichnis).

⁶²Sonnenfinsternisse finden bei Neumond statt.

Tabelle 7: Das JD der Jüdischen Monatsanfänge

Jahr							VI	(VI)	VII	VIII				XII
5750	2447			859	889			(-)	977	007		066	095	125
5751	2448	154	184	213	243	272	302	(-)	331	361	390	420	449	479
5752		508	538	568	598	627	657	(687)	716	746	775	805	834	864
5753		893	923	952	981	010	040	(-)	069	099	128	158	187	217
5754	2449	246	276	306	336	365	395	(-)	424	454	483	513	542	572
5755		601	631	660	690	719	749	(779)	808	838	867	897	926	956
5756		985	015	045	075	104	134	(-)	163	193	222	252	281	311
5757	2450	340	370	399	428	457	487	(517)	546	576	605	635	664	694
5758		723	753	782	812	841	871	(-)	900	930	959	989	018	048
5759	2451	077	107	137	167	196	226	(-)	255	285	314	344	373	403
5760		432	462	492	522	551	581	(611)	640	670	699	729	758	788
5761		817	847	867	905	934	964	(-)	993	023	052	082	111	141
5762	2452	170	200	229	259	288	318	(-)	347	377	406	436	465	495
5763		524	554	584	614	643	673	(703)	732	762	791	821	850	880
5764		909	939	969	999	028	058	(-)	087	117	146	176	205	235
5765	2453	264	294	323	352	381	411	(441)	470	500	529	559	588	618
5766		647	677	706	736	765	795	(-)	824	854	883	913	942	972
5767	2454	001	031	061	091	120	150	(-)	179	209	238	268	297	327
5768		356	386	415	444	473	503	(533)	562	592	621	651	680	710
5769		739	769	798	828	857	887	(-)	916	946	975	005	034	064
5770	2455	093	123	153	183	212	242	(-)	271	301	330	360	389	419
5771		448	478	508	538	567	597	(627)	656	686	715	745	774	804
5772		833	863	892	922	951	981	(-)	010	040	069	099	128	158
5773	2456	187	217	246	275	304	334	(-)	363	393	422	452	481	511
5774		540	570	600	630	659	689	(719)	748	778	807	837	866	896
5775		925	955	984	014	043	073	(-)	102	132	161	191	220	250
5776	2457	279	309	339	369	398	428	(458)	487	517	546	576	605	635
5777		664	694	723	752	781	811	(-)	840	870	899	929	958	988
5778	2458	017	047	076	106	135	165	(-)	194	224	253	283	312	342
5779		371	401	431	461	490	520	(550)	579	609	638	668	697	727
5780		756	786	816	846	875	905	(-)	934	964	993	023	052	082
5781	2459	111	141	170	199	228	258	(-)	287	317	346	376	405	435
5782		464	494	523	553	582	612	(642)	671	701	730	760	789	819
5783		848	878	908	938	967	997	(-)	026	056	085	115	144	174
5784	2460	203	233	262	291	320	350	(380)	409	439	468	498	527	557
5785		586	616	646	676	705	735	(-)	764	794	823	853	882	912
5786		941	971	000	030	059	089	(-)	118	148	177	207	236	266
5787	2461							(474)	503	533	562	592	621	651
5788			710					(-)	858					006
5789	2462							(-)	212					360

Kursiv gesetzte Zahlen gehören bereits zum folgenden Tagtausender. Beispiel: JD=2 448 007 ist der 0. Ijar 5750 der Weltära. \nearrow S. 8

A ANHANG

Tabelle 8: Das JD der Islamischen Monatsanfänge

Jahr		I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1410	2447	742	772	801	831	860	890	919	949	978	008	037	067
1411	2448	096	126	155	185	214	244	273	303	332	362	391	421
1412		450	480	509	539	568	598	627	657	686	716	745	775
1413		805	835	864	894	923	953	982	012	041	071	100	130
1414	2449	159	189	218	248	277	307	336	366	395	425	454	484
1415		513	543	572	602	631	661	690	720	749	779	808	838
1416		868	898	927	957	986	016	045	075	104	134	163	193
1417	2450	222	252	281	311	340	370	399	429	458	488	517	547
1418		577	607	636	666	695	725	754	784	813	843	872	902
1419		931	961	990	020	049	079	108	138	167	197	226	256
1420	2451	285	315	344	374	403	433	462	492	521	551	580	610
1421		640	670	699	729	758	788	817	847	876	906	935	965
1422		994	024	053	083	112	142	171	201	230	260	289	319
1423	2452	348	378	407	437	466	496	525	555	584	614	643	673
1424		703	733	762	792	821	851	880	910	939	969	998	028
1425	2453	057	087	116	146	175	205	234	264	293	323	352	382
1426		411	441	470	500	529	559	588	618	647	677	706	736
1427		766	796	825	855	884	914	943	973	002	032	061	091
1428	2454	120	150	179	209	238	268	297	327	356	386	415	445
1429		475	505	534	564	593	623	652	682	711	741	770	800
1430		829	859	888	918	947	977	006	036	065	095	124	154
1431	2455	183	213	242	272	301	331	360	390	419	449	478	508
1432		538	568	597	627	656	686	715	745	774	804	833	863
1433		892	922	951	981	010	040	069	099	128	158	187	217
1434	2456	246	276	305	335	364	394	423	453	482	512	541	571
1435		601	631	660	690	719	749	778	808	837	867	896	926
1436		955	985	014	044	073	103	132	162	191	221	250	280
1437	2457	310	340	369	399	428	458	487	517	546	576	605	635
1438		664	694	723	753	782	812	841	871	900	930	959	989
1439	2458	018	048	077	107	136	166	195	225	254	284	313	343
1440		373	403	432	462	491	521	550	580	609	639	668	698
1441		727	757	786	816	845	875	904	934	963	993	022	052
1442	2459	081	111	140	170	199	229	258	288	317	347	376	406
1443		436	466	495	525	554	584	613	643	672	702	731	761
1444		790	820	849	879	908	938	967	997	026	056	085	115
1445	2460	144	174	203	233	262	292	321	351	380	410	439	469
1446		499	529	558	588	617	647	676	706	735	765	794	824
1447		853	883	912	942	971	001	030	060	089	119	148	178
1448	2461	208	238	267	297	326	356	385	415	444	474	503	533
1449		562	592	621	651	680	710	739	769	798	828	857	887

Kursiv gesetzte Zahlen gehören bereits zum folgenden Tagtausender. Beispiel: JD=2 448 008 ist der 0. Shawwal 1410 der Hedschra. \nearrow S. 11

Tabelle 9: Das JD der Julianischen Monatsanfänge

Jahr		I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1990	2447	905	936	964	995	025	056	086	117	148	178	209	239
1991	2448	270	301	329	360	390	421	451	482	513	543	574	604
1992		635	666	695	726	756	787	817	848	879	909	940	970
1993	2449	001	032	060	091	121	152	182	213	244	274	305	335
1994		366	397	425	456	486	517	547	578	609	639	670	700
1995		731	762	790	821	851	882	912	943	974	004	035	065
1996	2450	096	127	156	187	217	248	278	309	340	370	401	431
1997		462	493	521	552	582	613	643	674	705	735	766	796
1998		827	858	886	917	947	978	008	039	070	100	131	161
1999	2451	192	223	251	282	312	343	373	404	435	465	496	526
2000		557	588	617	648	678	709	739	770	801	831	862	892
2001		923	954	982	013	043	074	104	135	166	196	227	257
2002	2452	288	319	347	378	408	439	469	500	531	561	592	622
2003		653	684	712	743	773	804	834	865	896	926	957	987
2004	2453	018	049	078	109	139	170	200	231	262	292	323	353
2005		384	415	443	474	504	535	565	596	627	657	688	718
2006		749	780	808	839	869	900	930	961	992	022	053	083
2007	2454	114	145	173	204	234	265	295	326	357	387	418	448
2008		479	510	539	570	600	631	661	692	723	753	784	814
2009		845	876	904	935	965	996	026	057	088	118	149	179
2010	2455	210	241	269	300	330	361	391	422	453	483	514	544
2011		575	606	634	665	695	726	756	787	818	848	879	909
2012		940	971	000	031	061	092	122	153	184	214	245	275
2013	2456	306	337	365	396	426	457	487	518	549	579	610	640
2014		671	702	730	761	791	822	852	883	914	944	975	005
2015	2457	036	067	095	126	156	187	217	248	279	309	340	370
2016		401	432	461	492	522	553	583	614	645	675	706	736
2017		767	798	826	857	887	918	948	979	010	040	071	101
2018	2458	132	163	191	222	252	283	313	344	375	405	436	466
2019		497	528	556	587	617	648	678	709	740	770	801	831
2020		862	893	922	953	983	014	044	075	106	136	167	197
2021	2459	228	259	287	318	348	379	409	440	471	501	532	562
2022		593	624	652	683	713	744	774	805	836	866	897	927
2023		958	989	017		078	109	139	170	201	231	262	292
2024	2460	323	354	383	414	444	475	505	536	567	597	628	658
2025		689	720	748	779	809	840	870	901	932	962	993	023
2026	2461	054	085	113	144	174	205	235	266	297	327	358	388
2027		419	450	478	509	539	570	600	631	662	692	723	753
2028		784	815	844	875	905	936	966	997	028	058	089	119
2029	2462	150	181	209	240	270	301	331	362	393	423	454	484

Kursiv gesetzte Zahlen gehören bereits zum folgenden Tagtausender. Beispiel: JD=2 448 025 ist der 0. Mai 1990 (jul.). \nearrow S. 14

A ANHANG

Tabelle 10: Das JD der Gregorianischen Monatsanfänge

Jahr		I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1990	2447	892	923	951	982	012	043	073	104	135	165	196	226
1991	2448	257	288	316	347	377	408	438	469	500	530	561	591
1992		622	653	682	713	743	774	804	835	866	896	927	957
1993		988	019	047	078	108	139	169	200	231	261	292	322
1994	2449	353	384	412	443	473	504	534	565	596	626	657	687
1995		718	749	777	808	838	869	899	930	961	991	022	052
1996	2450	083	114	143	174	204	235	265	296	327	357	388	418
1997		449	480	508	539	569	600	630	661	692	722	753	783
1998		814	845	873	904	934	965	995	026	057	087	118	148
1999	2451	179	210	238	269	299	330	360	391	422	452	483	513
2000		544	575	604	635	665	696	726	757	788	818	849	879
2001		910	941	969	000	030	061	091	122	153	183	214	244
2002	2452	275	306	334	365	395	426	456	487	518	548	579	609
2003		640	671	699	730	760	791	821	852	883	913	944	974
2004	2453	005	036	065	096	126	157	187	218	249	279	310	340
2005		371	402	430	461	491	522	552	583	614	644	675	705
2006		736	767	795	826	856	887	917	948	979	009	040	070
2007	2454	101	132	160	191	221	252	282	313	344	374	405	435
2008		466	497	526	557	587	618	648	679	710	740	771	801
2009		832	863	891	922	952	983	013	044	075	105	136	166
2010	2455	197	228	256	287	317	348	378	409	440	470	501	531
2011		562	593	621	652	682	713	743	774	805	835	866	896
2012		927	958	987	018	048	079	109	140	171	201	232	262
2013	2456	293	324	352	383	413	444	474	505	536	566	597	627
2014		658	689	717	748	778	809	839	870	901	931	962	992
2015	2457	023	054	082	113	143	174	204	235	266	296	327	357
2016		388	419	448	479	509	540	570	601	632	662	693	723
2017		754	785	813	844	874	905	935	966	997	027	058	088
2018	2458	119	150	178	209	239	270	300	331	362	392	423	453
2019		484	515	543	574	604	635	665	696	727	757	788	818
2020		849	880	909	940	970	001	031	062	093	123	154	184
2021	2459	215	246	274	305	335	366	396	427	458	488	519	549
2022		580	611	639	670	700	731	761	792	823	853	884	914
2023	2400	945	976	004	035	065	096	126	157	188		249	279
2024	2460	310	341	370	401	431	462	492	523	554	584	615	645
2025	2.12.1	676	707	735	766	796	827	857	888	919	949	980	010
2026	2461	041	072	100	131	161	192	222	253	284	314	345	375
2027		406	437	465	496	526	557	587	618	649	679	710	740
2028	0.400	771	802	831	862	892	923	953	984	015	045	076	106
2029	2462	137	168	196	227	257	288	318	349	380	410	441	471

Kursiv gesetzte Zahlen gehören bereits zum folgenden Tagtausender. Beispiel: JD=2 448 012 ist der 0. Mai 1990 (greg.). \nearrow S. 14

Tabelle 11: Das JD der Chinesischen Monatsanfänge

Jahr/Z	Zyklus		I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
07/78	Pferd	2447	918	947	977	006	$035 \\ 065$	094	123	153	182	212	242	272
08/78	Schaf	2448	302	331	361	390	419	449	478	507	537	566	596	626
09/78	Affe		656	685	715	745	774	803	833	862	891	921	950	980
10/78	Huhn	2449	010	039	069 099	128	158	187	217	246	275	305	334	364
11/78	Hund		393	423	453	483	512	542	571	601	630	659	689	718
12/78	Schwein		748	777	807	837	866	896	925	955 985	014	043	073	102
13/78	Ratte	2450	132	161	191	220	250	280	309	339	368	398	428	457
14/78	Ochse		486	516	545	575	604	634	663	693	723	752	782	812
15/78	Tiger		841	871	900	929	959 988	017	047	077	106	136	166	195
16/78	$_{\mathrm{Hase}}$	2451	225	255	284	313	343	372	401	431	460	490	520	550
17/78	Drache		579	609	639	668	697	727	756	785	815	844	874	904
18/78	Schlange		933	963	993	$\begin{array}{c} 022 \\ 052 \end{array}$	081	111	140	169	199	228	258	287
19/78	Pferd	2452	317	347	377	406	436	465	495	524	553	583	612	642
20/78	Schaf		671	701	731	760	790	820	849	879	908	937	967	996
21/78	Affe	2453	026	055 085	114	144	174	203	233	262	292	321	351	380
22/78	Huhn		410	439	469	498	528	557	587	617	646	676	705	735
23/78	Hund		764	794	823	853	882	912	941 971	000	030	060	089	119
24/78	Schwein	2454	149	178	207	237	266	295	325	354	384	414	444	473
25/78	Ratte		503	533	562	591	621	650	679	709	738	768	798	827
26/78	Ochse		857	887	917	946	$\begin{array}{c} 975 \\ 005 \end{array}$	034	063	093	122	152	181	211
27/78	Tiger	2455	241	271	300	330	359	389	418	447	477	506	536	565
28/78	Hase		595	625	654	684	714	743	773	802	831	861	890	920
29/78	Drache		949	979	008	$\begin{array}{c} 038 \\ 068 \end{array}$	097	127	156	186	215	245	274	304
II '	O	2456	333	363	392	422	452	481	511	540		599	629	658
31/78	Pferd		688	717	747	776	806	835	865	894	924 954	983	013	042
32/78	Schaf	2457	072	101	131	160	189	219	248	278	308	338	367	397
33/78	Affe		426	456	485	515	544	573	603	632	662	692	721	751
34/78	Huhn		781	810	840	869	899	928 957	987	016	046	075	105	135
35/78	Hund	2458	165	194	224	253	283	312	341	371	400	430	459	489
36/78	Schwein		519	548	578	608	637	667	696	725	755	784	813	843
37/78	Ratte		873	902	932	962 992	021	051	080	109	139	168	198	227

Kursiv gesetzte Zahlen gehören bereits zum folgenden Tagtausender.

Der Schaltmonat jun steht im Doppelmonat **unten**.

Beispiel: JD=2 458 992 ist der 0. $sz\check{e}$ jun yüe Ratte. \nearrow S. 20 Vielen Dank Herrn Klaus Hildebrandt aus Feldkirch in Österreich für seine Korrekturen der Berechnungen.

A ANHANG

A.2 Transskriptionstafeln der chinesischen Zeichen

Die 12 irdischen Elemente 十二地支								
Ratte	$ts\check{e}$	子	Drache	schin	辰	Affe	schin	#
Ochse	tscheu	$\frac{1}{2}$	Schlange	$sz\check{e}$	巳	Hahn	yeu	酉
Tiger	yin	寅	Pferd	ngu	午	Hund	$si\ddot{u}$	戌
Hase	mao	卯	Schaf	wei	未	Schwein	hai	女

Die 10 himmlischen Elemente 十天干								
	Holz 木	Feuer 火	Erde ±	Metall 金	Wasser 水			
männliche Form	orm kia 甲 ping 丙 wu 戊 keng 庚 jin 壬							
weibliche Form	yi Z	$\Big _{ting} \; T$	ki	sin 峷	kuei 英			

	Die 28 Mondsta	ationen 二十八	、宿
1. 角 kio	8. H teu	15. 奎 kuei	22. # tsing
2. 元 k'ang	9. 4 nieu	16. 婁 leu	23. L kuei
3. K ti	10. 女 niü	17. 🛱 wei	$_{24.}$ 柳 $_{lieu}$
4.	11. k hiü	18. 昴 <i>mao</i>	25. 星 sing
5. \(\) sin	12. K wei	_{19.} 畢 pi	26. 炭 tschang
6. 尾 wei	13. schi	20. 啃 tsui	27. 翼 yi
7. 箕 ki	14. 壁 pi	21. * ts'an	28. 軫 tschen

Die Monate des Mondkalenders 十二阴历月				
1. 正月 tsching-yüe	5. 	9. 十月 kieu-yüe		
」。二月 <i>öl-yüe</i>	6.	_{10.} 十月 _{schi-yüe}		
3. 三月 san-yüe	7. 七月 <i>ts'i-yüe</i>	_{11.} 十一月 _{schi-i-yüe}		
4. 四月 szě-yüe	8. 入月 <i>pa-yüe</i>	_{12.} 十二月 schi-öl-yüe		

	Die Tage des Monats	三十月日
1. 一日	11. 十一日	$_{21.}$ $=$ $+$ $ \boxminus$
2. 二日	$_{12.}$ $+$ $=$ $=$	$_{22.}$ $=$ $+$ $=$ $=$
3. 三日	13. 十三日	$_{23.}$ $=$ $+$ \equiv \boxminus
4. 四日	14. 十四日	$_{24.}$ 二十四日
5. 五日	15. 十五日	$_{25.}$ $=$ $+$ $\stackrel{\frown}{L}$ \boxminus
6. 大日	16.十六日	26. 二十六日
7.七日	17.十七日	27. 二十七日
8. 八日	18.十八日	28. 二十八日
9. 九日	19. 十十日	$_{29.}$ $=$ $+$ $+$ $+$
10. 十日	$_{20.}$ $=$ $+$ \boxminus	30. 三十日

Der Kalender					
日	ji Tag	月	$y\ddot{u}e$ Monat		
闰月	jun yüe Schaltmonat	新月	sin yüe Neumond		
年	nien Jahr	新年	sin nien Neujahr		
万年书	$wan \ nien \ schu$	Buch	der zehntausend Jahre		
花甲子	hua kia tse	Chinesis	cher Sexagesimalzyklus		

Die Syntax des chinesischen Datums lautet:

(himml.Ele)(ird.Ele)年 (Monat)月 (Tag)日 oder (himml.Ele)(ird.Ele)年 (Schaltmonat)闰月 (Tag)日

z.B. 26. VII. im Jahr Feuer und Affe 月中年七月二十六日 1. IV. jun im Jahr Metall und Ratte 東子年四闰月-日 1. VII. im Jahr Erde und Hase 己卯年七月-日 19. XII. im Jahr Holz und Schwein 20. I. im Jahr Wasser und Pferd 壬午年正月二十日

A ANHANG

A.3 Die Tagesnamen der Siebentagewoche

Schon die babylonischen Astrologen teilten den Tag in 24 Stunden. Die erste Stunde (nach Sonnenaufgang = 6^h) des Samstages war dem Saturn geweiht; die folgenden Stunden Jupiter, Mars, Sonne, Venus, Merkur und Mond in der Reihenfolge ihrer Umlaufzeit. Die achte Stunde gehörte wieder dem Saturn, die neunte dem Jupiter etc. Die erste Stunde des nächsten Tages stand somit unter dem Zeichen der Sonne. Nach diesem System erhielten die sieben Wochentage den Namen nach ihrem ersten Stundenregenten.

Tag	Lateinischer Name	Planet	
Sonntag	Dies Solis	Sonne	\odot
Montag	Dies Lunæ	Mond	\mathbb{C}
Dienstag	Dies Martis	Mars	8
Mittwoch	Dies Mercurii	Merkur	Ϋ
Donnerstag	Dies Jovis	Jupiter	Ц
Freitag	Dies Veneris	Venus	Q
Samstag	Dies Saturni	Saturn	ħ

Im Englischen wurden einige Wochentage nach den germanischen Gottheiten umbenannt. Im Französischen, Italienischen und Spanischen ist der Sonntag nach dem kirchlichen Namen "dies domenica" (Tag des Herrn) benannt.

	Englisch	Französisch	Italienisch	Spanisch
SO	Sunday	Dimanche	Domenica	Domingo
МО	Monday	Lundi	Lunedì	Lunes
DI	Tuesday	Mardi	Martedì	Martes
MI	Wednesday	Mercredi	Mercoledì	Miércoles
DO	Thursday	Jeudi	Giovedì	Jueves
FR	Friday	Vendredi	Venerdì	Viernes
SA	Saturday	Samedi	Sabato	Sábado

Im Russischen, Polnischen, Tschechischen und Griechischen benennt man die Wochentage nach Ordnungszahlen. Der Samstag ist nach dem Šabbat benannt. Der Sonntag heißt <russ> "woskresenje"(Auferstehung) bzw. <poln/tschech> "nedjela"(nichts tun, ausruhen) bzw. <griech> "i Kyriaki"(Tag des Herrn).

	Russisch	Polnisch	Tschechisch	Griechisch
SO	воскресенье	niedziela	neděle	η Κυριακη
МО	понедельник	poniedzialek	pondělí	$\eta \ \Delta \epsilon v \tau \epsilon \rho \alpha$
DI	вторник	${ m wtorek}$	úterý	$\eta T \rho \iota \tau \eta$
MI	среда	sroda	$st\check{r}eda$	$\eta T\epsilon \tau \alpha \rho \tau \eta$
DO	четверг	$\operatorname{czwartek}$	čtvrtek	$\eta \Pi \epsilon \mu \pi \tau \eta$
FR	пятница	paitek	pátek	η Παρασκευη
SA	суббота	${ m sobota}$	sobota	το Σαββατον

A.4 Einige Übungsaufgaben

- Aufg. 1: In welchem Jahr fallen letztmalig Julianisches und Gregorianisches Ostern zusammen?
- Aufg. 2: Wann fiel das Jüdische Passah-Fest ⁶³ zuletzt mit dem Julianischen (VIII. Jh.) bzw. zuerst mit dem Gregorianischen (XVII. Jh.) Ostersonntag zusammen?
- Aufg. 3: Man versuche eine Periode in den Jüdischen Jahreslängen zu finden!
 - Lösung 1: Völlig unsystematische Folge der Jahreslängen.
 - Lösung 2: Es gibt eine Periode, sie ist aber für praktische Berechnungen viel zu lang.
- Aufg. 4: In welchem Jahr würde der Julianische Ostersonntag erstmals auf den 24. Dezember des Gregorianischen Kalenders fallen (falls der Julianische Kalender dann noch in Gebrauch ist)?
- Aufg. 5: Vera O. wurde am 13. Januar 1995 greg. geboren. Wieviel Tage vergehen jeweils bis zum n^{ten} Geburtstag im Gregorianischen, Jüdischen und Chinesischen Kalender? Wann feiert sie erstmals nach allen 3 Kalendern wieder gleichzeitig Geburtstag?
- Aufg. 6: Das folgende MS-Fortran-Programm berechnet die islamischen Monatsanfänge. Man entwickle für andere Kalender ähnliche Programme!

```
c by Udo Heyl 1997 : ISLAM >>> JD
                   a, k(2) / 0.363636 , 9.28 /
     REAL*4
                   jd, b, c, d , diff(12) / 0, 30,
     INTEGER*4
                                                     59,
           118, 148, 177, 207, 236, 266, 295, 325 /
     CHARACTER*15 month(12) /
           'Muharram', 'Safar
                               ', 'Rabi 1
                                             ', 'Rabi 2
            'Jumada 1', 'Jumada 2', 'Rajab
                                            ', 'Shaban
           'Ramadan', 'Shawwal', 'Dhul Qada', 'Dhul Hijja'/
     WRITE(*,1)
     READ (*,2) jahr
     a = MOD(jahr + 5, 30)
     b = MOD(int(k(1) * a + k(2)), 11)
     c = INT(jahr / 30)
     d = MOD(jahr, 30)
     jd = 1948085 + 10631 * c + 354 * d + b
     D0 i=1,12
         WRITE(*,*) '0.'//month(i)//'= ', jd + diff(i)
1
     FORMAT('&Welches Jahr des islamischen Kalenders???')
2
     FORMAT(i4)
     END
```

⁶³Der 15. Nisan fällt stets 162 Tage vor dem 0. Tishri des folgenden Jahres.

A ANHANG

A.5 Bibliographie

[1] АБРАМЯН, А. Г., Труды древних календаристов в рукописях Матенадарана. Тезисы докладов межвузовской конференции по истории физикоматематических наук 25 мая — 2 июня 1960 г. (ABRAMJAN, Arbeiten alter Kalenderforscher in den Handschriften Matenadarans)

- [2] ACHELIS, E., Of Time and the Calendar. 132 p., New York 1955
- [3] Ahnert, P., Astronomisch-chronologische Tafeln für Sonne, Mond und Planeten.
 6. völlig überarb. Aufl. (76 S., 8 Abb.), Johann Ambrosius Barth, Leipzig 1988
- [4] BICKERMANN, E., Chronologie. TEUBNER, Leipzig und Berlin 1963
- [5] Biot, J. B., Résumé de chronologie astronomique. 476 p., Paris 1849
- [6] Burnaby, S. B., The Jewish and the Muhammadan Calendars. London 1901
- [7] БУТКЕВИЧ, А. В., ГАНЬШИН, В. Н., ХРЕНОВ, Л. С., Время и календарь. Под общей ред. проф. Л. С. Хренова. «Высшая школа» Москва 1960 (ВИТКЕ-WITSCH, GANSCHIN und CHRENOW, Zeit und Kalender. Moskau 1960)
- [8] Cassini J., Elements d'Astronomie. 643 p., Paris 1740
- [9] Cassini J., Tables astronomiques. 222 p., Paris 1740
- [10] FRITSCHE, H., On Chronology and the Construction of the Calendar with special regard to the Chinese computation of time compared with the European. Petersburg 1886 (Tafel der chinesischen Monatsanfänge von 1624-1921)
- [11] GAUSS, C. F., Werke. 9 Bände; Bd. I-VI: KÖNIGLICHE GESELLSCHAFT DER WISSEN-SCHAFTEN, Göttingen 1863-1874; Bd. VII: F. A. PERTHES, Gotha 1871; Bd. VIII-IX: DEUBNER IN COMM., Leipzig 1900 und 1903 — in Bd. VI, S. 73-86 enthalten:
 - I: Berechnung des Osterfestes. Monatliche Correspondenz zur Beförderung der Erd- und Himmels- Kunde, herausgegeben vom Freiherrn von Zach. August 1800
 - II: Berechnung des J\u00fcdidischen Osterfestes. Monatliche Correspondenz zur Bef\u00f\u00fcrderung der Erd- und Himmels- Kunde, herausgegeben vom Freiherrn VON ZACH. Mai 1802
 - III: Noch etwas über die Bestimmung des Osterfestes. Braunschweigisches Magazin vom 12. September 1807
- [12] GINZEL, F. K., Handbuch der mathematischen und technischen Chronologie. 3 Bände, Hinrichssche Buchhandlung, Leipzig 1906,1911,1914, unveränd. Nachdr. DEUTSCHER BUCHEXPORT UND IMPORT, Leipzig 1958 (Vollständige Darstellung von Geschichte und Berechnungsmethoden aller bekannter Kalendersysteme)
- [13] GROTHEFEND, H., Zeitrechnung des deutschen Mittelalters und der Neuzeit. 3 Bände, HAHNsche Buchhandlung, Hannover und Leipzig, 1891/98
- [14] Hahn, I., Sonnentage Mondjahre; Über Kalendersysteme und Zeitrechnung. 1. Aufl. (128 S.), Urania-Verlag, Leipzig-Jena-Berlin 1989
- [15] Hamel, J., Kalenderrechnung und Kalenderschriften in Vergangenheit und Gegenwart. Archenhold-Sternwarte Berlin-Treptow 1983
- [16] HARTMANN, O. E., Der römische Kalender. Leipzig 1882, unveränd. Nachdr. Walluf bei Wiesbaden 1973
- [17] IDELER L., Handbuch der mathematischen und technischen Chronologie. 2 Bände, Berlin 1825/26

A.6 Referenz 35

[18] ИДЕЛЬСОН, Н. И., История календаря. 176 стр. Ленинград 1925. (IDELSON, Geschichte des Kalenders. Leningrad 1925)

- [19] JACOBSTHAL, W., Mondphasen, Osterrechnung und ewiger Kalender. SPRINGER, Berlin 1917
- [20] Каменцева Е. И., Хронологиа. 187 стр., Москва 1967 (Камендеwa, Chronologie. Moskau 1967)
- [21] LIETZMANN H., Zeitrechnung der römischen Kaiserzeit, des Mittelalters und der Neuzeit für die Jahre 1–2000 nach Christus. DE GRUYTER, Berlin 1956
- [22] Mahler E. Handbuch der j\u00fcdischen Chronologie. Frankfurt am Main 1916, Nachdr. GG Olms, Hildesheim 1967
- [23] MEEUS, J., Astronomische Algorithmen. 2. durchgesehene Auflage (ca. 400 Seiten, 40 Zeichnungen und zahlr. Tabellen), JOHANN AMBROSIUS BARTH, Leipzig-Berlin-Heidelberg 1994
- [24] NEUGEBAUER, P. V., Hilfstafeln zur technischen Chronologie. VERLAG DER ASTRONOMISCHEN NACHRICHTEN, Kiel 1937
- [25] OPPOLZER, Th., Canon der Finsternisse. "Denkschr. Akademie der Wissenschaften", Band 52, Wien 1887
- [26] Scaliger J., Opus novum de emendatione temporum. 432 p., Paris 1583
- [27] SCHRAM, R., Kalendariographische und Chronologische Tafeln. (XXXVI Kapitel, 368 Seiten), HINRICHSsche Buchhandlung, Leipzig 1908
- [28] SELESCHNIKOW, S. I., Wieviel Monde hat ein Jahr? Kleine Kalenderkunde. (215 S.), Verlag Mir, Moskau und Urania-Verlag Leipzig-Jena-Berlin 1981
- [29] СЮЕ УЖУН-САНЬ, ОУЯН И., Таблица для перевода дат китайского календаря на европейское летосчисление и обратно с 1 по 2000 год н.э. (2-е изд.). Пекин 1956, воспроизведение «Наука» 1962 (SJUE USHUN-SANJ, OUJAN I., Tabellen zur Umrechnung der Daten des Chinesischen Kalenders auf die europäische Jahreszählung von 1 bis 2000 n. Chr., Peking 1956)
- [30] Spier, A., The comprehensive Hebrew Calendar. 288 p., New York 1952
- [31] WATKINS H., Time Counts. The Story of the Calendar. 274 p., London 1954
- [32] ЦИБУЛЬСКИЙ В. В., Современные календари стран Ближнего и Среднего Востока. Синхронистические таблицы и пояснения, 236 стр., Москва 1964 (ZIBULSKI, Gegenwärtige Kalender der Länder des Nahen und Mittleren Ostens. Synchrontabellen und Erläuterungen, Moskau 1964)

A.6 Referenz

Die Algorithmen beruhen auf eigenen Berechnungen, die sich auf die gegebenen Schaltregeln stützen, oder wurden leicht vereinfacht den zuvor genannten Werken entnommen. Die Tabellen der Monatsanfänge wurden nach diesen Algorithmen erstellt. Für Berichtigungen und Hinweise bin ich dankbar.